How many Earth radii above the Earth (not from its center) must you be located to experience an acceleration of gravity of 1.38 m/s/s. Express in terms of Earth-radii; that is, express the answer as the number of times greater than 6.38 x 106 m. Ratio of altitude/REarth

Respuesta :

Answer:

It is necessary to be at 2.66 Earth radii to experience an acceleration of  [tex]1.38m/s^{2}[/tex].  

Explanation:          

The height above the earth surface necessary to experience an acceleration of [tex]1.38 m/s^{2}[/tex] can be found by means of the Universal law of gravity:

[tex]F = G\frac{M \cdot m}{r^{2}}[/tex]  (1)

Then, replacing Newton's second law in equation 3 it is gotten:

[tex]m\cdot a = G\frac{M \cdot m}{r^{2}}[/tex]  (2)

Then, r can be isolated from equation 2    

[tex]a = G\frac{M \cdot m}{m.r^{2}}[/tex]

[tex]a = \frac{GM}{r^{2}}[/tex]

[tex]r^{2}  = \frac{GM}{a}[/tex]

[tex]r  = \sqrt{\frac{GM}{a}}[/tex]  (3)

Where G is the gravitational constant, M is the mass of the Earth and a is the acceleration.                

[tex]r  = \sqrt{\frac{(6.67x10^{-11}N.m^{2}/kg^{2})(5.972x10^{24}kg)}{1.38m/s^{2}}}[/tex]

[tex]r = 16.989x10^{6}m[/tex]    

[tex]Earth_{radii} = \frac{height}{Rearth}[/tex]            

[tex]Earth_{radii} = \frac{height}{Rearth}[/tex]

[tex]Earth_{radii} = \frac{ 16.989x10^{6}m}{6.38x10^{6} m}[/tex]

[tex]Earth_{radii} = 2.66[/tex]

Hence, it is necessary to be at 2.66 Earth radii to experience an acceleration of  [tex]1.38m/s^{2}[/tex].          

 

ACCESS MORE