Answer:
It is necessary to be at 2.66 Earth radii to experience an acceleration of [tex]1.38m/s^{2}[/tex].
Explanation:
The height above the earth surface necessary to experience an acceleration of [tex]1.38 m/s^{2}[/tex] can be found by means of the Universal law of gravity:
[tex]F = G\frac{M \cdot m}{r^{2}}[/tex] (1)
Then, replacing Newton's second law in equation 3 it is gotten:
[tex]m\cdot a = G\frac{M \cdot m}{r^{2}}[/tex] (2)
Then, r can be isolated from equation 2
[tex]a = G\frac{M \cdot m}{m.r^{2}}[/tex]
[tex]a = \frac{GM}{r^{2}}[/tex]
[tex]r^{2} = \frac{GM}{a}[/tex]
[tex]r = \sqrt{\frac{GM}{a}}[/tex] (3)
Where G is the gravitational constant, M is the mass of the Earth and a is the acceleration.
[tex]r = \sqrt{\frac{(6.67x10^{-11}N.m^{2}/kg^{2})(5.972x10^{24}kg)}{1.38m/s^{2}}}[/tex]
[tex]r = 16.989x10^{6}m[/tex]
[tex]Earth_{radii} = \frac{height}{Rearth}[/tex]
[tex]Earth_{radii} = \frac{height}{Rearth}[/tex]
[tex]Earth_{radii} = \frac{ 16.989x10^{6}m}{6.38x10^{6} m}[/tex]
[tex]Earth_{radii} = 2.66[/tex]
Hence, it is necessary to be at 2.66 Earth radii to experience an acceleration of [tex]1.38m/s^{2}[/tex].