Answer:
At Discount rate=6%=0.06:
For investment X:
[tex]PV_X=\$4,800*\frac{1-\frac{1}{(1+0.06)^9}}{0.06} \\PV_X=\$32,648.12[/tex]
For investment Y:
[tex]PV_Y=\$7,100*\frac{1-\frac{1}{(1+0.06)^5}}{0.06} \\PV_Y=\$29,907.78[/tex]
At Discount rate=16%=0.16:
For investment X:
[tex]PV_X=\$4,800*\frac{1-\frac{1}{(1+0.16)^9}}{0.16} \\PV_X=\$22,111.41[/tex]
For investment Y:
[tex]PV_Y=\$7,100*\frac{1-\frac{1}{(1+0.16)^5}}{0.16} \\PV_Y=\$23,247.48[/tex]
Explanation:
Amount paid annually Due to investment X=A=$4,800
Amount paid annually Due to investment Y=A=$7,100
Number of years for investment X =n=9
Number of years for investment Y=n=5
Formula:
[tex]PV=A(\frac{1-\frac{1}{(1+r)^n}}{r})[/tex]
At Discount rate=6%=0.06:
For investment X:
[tex]PV_X=\$4,800*\frac{1-\frac{1}{(1+0.06)^9}}{0.06} \\PV_X=\$32,648.12[/tex]
For investment Y:
[tex]PV_Y=\$7,100*\frac{1-\frac{1}{(1+0.06)^5}}{0.06} \\PV_Y=\$29,907.78[/tex]
At Discount rate=16%=0.16:
For investment X:
[tex]PV_X=\$4,800*\frac{1-\frac{1}{(1+0.16)^9}}{0.16} \\PV_X=\$22,111.41[/tex]
For investment Y:
[tex]PV_Y=\$7,100*\frac{1-\frac{1}{(1+0.16)^5}}{0.16} \\PV_Y=\$23,247.48[/tex]