Answer:
The velocity the air will enter the room through an opening is 20.9 [tex]\frac{ft}{s}[/tex]
Explanation:
We have to consider 2 points
Point 1 = Being away from the laboratory door
Point 2 = Gab between the floor and the laboratory door
Using the Bernoulli equation
[tex]\frac{p1}{d_a_i_r g} + \frac{V1^{2} }{2g} + z1 = \frac{p2}{d_a_i_r g} + \frac{V2^{2} }{2g} + z2[/tex]
Assuming
p1 = patm
p2 = patm + plab
patm will be cancel and both points will be at the ground level
[tex]0 = \frac{plab}{d_a_i_r g} + \frac{V2^{2} }{2g}\\ \frac{V2^{2} }{2g} = \sqrt[]{\frac{-2plab}{d_a_i_r} }[/tex]
[tex]d_a_i_r[/tex] = - у H2O * hH2O
[tex]= \frac{lb}{ft^{3}} * \frac{0.1}{2} ft\\= 0.52 \frac{lb}{ft^{2}}[/tex]
Substituting the results
[tex]V2 = (\frac{- 2 * (- 0.520) \frac{lb}{ft^{2} } }{2.38 * 10^{-3} \frac{sl}{ft^{3} } })^{1/2}[/tex]
V2 = 20.9 [tex]\frac{ft}{s}[/tex]