Answer:
Population standard deviation, [tex]\sigma[/tex] = 3683.063 .
Step-by-step explanation:
We are given that the width of the estimated confidence interval i.e. 99% is 600 and the sample size used in estimating the mean is 1000 which means ; n = 1000 and width = 600
We know that Width of confidence interval = 2 * Margin of error
Margin of error = [tex]Z_\frac{\alpha}{2} * \frac{\sigma}{\sqrt{n} }[/tex] = 2.5758 * [tex]\frac{\sigma}{\sqrt{1000} }[/tex] {because at 1% significance level
z table has value of 2.5758 .}
Therefore, 600 = 2 * 2.5758 * [tex]\frac{\sigma}{\sqrt{1000} }[/tex]
⇒ [tex]\sigma[/tex] = [tex]\frac{600 * \sqrt{1000} }{2 * 2.5758}[/tex] = 3683.063 .
Hence, the Population standard deviation = 3683.063 .