Answer:
hₘₒₒₙ = 6.05 h
Rₘₒₒₙ = 6.05 R
Explanation:
Let θ be the angle of jump.
Let h and R be maximum height and horizontal range attained on earth respectively.
Let hₘₒₒₙ and Rₘₒₒₙ be the maximum height and horizontal range on the moon respectively
The range for a projectile is given as
R = v₀(x)T = v₀ cos(θ) T
T = (2v₀ sinθ)/g
Range, R = (v₀ cos θ)(2v₀ sinθ)/g = v₀²(2sinθcosθ)/g = v₀² (sin2θ)/g
The maximum range occurs at θ = 45°
Maximum range R = v₀²/g = v₀²/9.8 = 0.102v₀²
On the moon, g = 1.62 m/s²
Maximum range, Rₘₒₒₙ = v₀²/gₘₒₒₙ = v₀²/1.62 = 0.617v₀²
Rₘₒₒₙ = 6.05 R
Maximum Height of a projectile is given as = (v₀² Sin²θ)/2g
θ = 45°; sin 45° = (√2)/2; sin²45° = 2/4 = 1/2
h = v₀²(1/2)/2g = v₀²/4g
On earth, g = 9.8 m/s²
h = v₀²/(4×9.8) = v₀²/39.2 = 0.0255v₀²
On the moon, gₘₒₒₙ = 1.62 m/s²
hₘₒₒₙ = v₀²/(4×1.62) = v₀²/6.48 = 0.154v₀²
hₘₒₒₙ = 6.05 h