The key step in the metabolism of glucose for energy is the isomerization of glucose−6−phosphate (G6P) to fructose−6−phosphate (F6P): G6P ⇌ F6P K = 0.510, at 298K. A. Calculate ΔG when Q, the [F6P]/[G6P] ratio, equals 10.0.B. Calculate ΔG when Q = 0.100.C. Calculate Q if ΔG = 2.50 kj/mol.

Respuesta :

Answer :

(A) The value of [tex]\Delta G_{rxn}[/tex] is, 7.37 kJ/mol

(B) The value of [tex]\Delta G_{rxn}[/tex] is, -4.03 kJ/mol

(C) The value of Q for the reaction is, 1.39

Explanation :

The given balanced chemical reaction is,

[tex]G6P\rightarrow F6P[/tex]

The expression for reaction quotient will be :

[tex]Q=\frac{[F6P]}{[G6P]}[/tex]

Given:

[tex]Q=\frac{[F6P]}{[G6P]}=10.0[/tex]

k = 0.510

First we have to calculate the [tex]\Delta G^o[/tex] for the reaction.

[tex]\Delta G^o=-RT\ln k[/tex]

[tex]\Delta G^o=-(8.314J/mol.K)\times (298K)\times \ln (0.510)[/tex]

[tex]\Delta G^o=1668.259J/mol=1.67kJ/mol[/tex]

Part A:

Now we have to calculate the value of [tex]\Delta G_{rxn}[/tex].

The formula used for [tex]\Delta G_{rxn}[/tex] is:

[tex]\Delta G_{rxn}=\Delta G^o+RT\ln Q[/tex]    ............(1)

where,

[tex]\Delta G_{rxn}[/tex] = Gibbs free energy for the reaction  = ?

[tex]\Delta G_^o[/tex] =  standard Gibbs free energy  = 1.67 kJ/mol

R = gas constant = [tex]8.314\times 10^{-3}kJ/mole.K[/tex]

T = temperature = 298 K

Q = reaction quotient = 10.0

Now put all the given values in the above formula 1, we get:

[tex]\Delta G_{rxn}=(1.67kJ/mol)+[(8.314\times 10^{-3}kJ/mole.K)\times (298K)\times \ln (10.0)[/tex]

[tex]\Delta G_{rxn}=7.37kJ/mol[/tex]

Thus, the value of [tex]\Delta G_{rxn}[/tex] is, 7.37 kJ/mol

Part B:

Now we have to calculate the value of [tex]\Delta G_{rxn}[/tex].

The formula used for [tex]\Delta G_{rxn}[/tex] is:

[tex]\Delta G_{rxn}=\Delta G^o+RT\ln Q[/tex]    ............(1)

where,

[tex]\Delta G_{rxn}[/tex] = Gibbs free energy for the reaction  = ?

[tex]\Delta G_^o[/tex] =  standard Gibbs free energy  = 1.67 kJ/mol

R = gas constant = [tex]8.314\times 10^{-3}kJ/mole.K[/tex]

T = temperature = 298 K

Q = reaction quotient = 0.100

Now put all the given values in the above formula 1, we get:

[tex]\Delta G_{rxn}=(1.67kJ/mol)+[(8.314\times 10^{-3}kJ/mole.K)\times (298K)\times \ln (0.100)[/tex]

[tex]\Delta G_{rxn}=-4.03kJ/mol[/tex]

Thus, the value of [tex]\Delta G_{rxn}[/tex] is, -4.03 kJ/mol

Part C:

Now we have to calculate the value of Q.

The formula used for [tex]\Delta G_{rxn}[/tex] is:

[tex]\Delta G_{rxn}=\Delta G^o+RT\ln Q[/tex]    ............(1)

where,

[tex]\Delta G_{rxn}[/tex] = Gibbs free energy for the reaction  = 2.50 kJ/mol

[tex]\Delta G_^o[/tex] =  standard Gibbs free energy  = 1.67 kJ/mol

R = gas constant = [tex]8.314\times 10^{-3}kJ/mole.K[/tex]

T = temperature = 298 K

Q = reaction quotient = ?

Now put all the given values in the above formula 1, we get:

[tex]2.50kJ/mol=(1.67kJ/mol)+[(8.314\times 10^{-3}kJ/mole.K)\times (298K)\times \ln (Q)[/tex]

[tex]Q=1.39[/tex]

Thus, the value of Q for the reaction is, 1.39

ACCESS MORE