Respuesta :
Answer :
(A) The value of [tex]\Delta G_{rxn}[/tex] is, 7.37 kJ/mol
(B) The value of [tex]\Delta G_{rxn}[/tex] is, -4.03 kJ/mol
(C) The value of Q for the reaction is, 1.39
Explanation :
The given balanced chemical reaction is,
[tex]G6P\rightarrow F6P[/tex]
The expression for reaction quotient will be :
[tex]Q=\frac{[F6P]}{[G6P]}[/tex]
Given:
[tex]Q=\frac{[F6P]}{[G6P]}=10.0[/tex]
k = 0.510
First we have to calculate the [tex]\Delta G^o[/tex] for the reaction.
[tex]\Delta G^o=-RT\ln k[/tex]
[tex]\Delta G^o=-(8.314J/mol.K)\times (298K)\times \ln (0.510)[/tex]
[tex]\Delta G^o=1668.259J/mol=1.67kJ/mol[/tex]
Part A:
Now we have to calculate the value of [tex]\Delta G_{rxn}[/tex].
The formula used for [tex]\Delta G_{rxn}[/tex] is:
[tex]\Delta G_{rxn}=\Delta G^o+RT\ln Q[/tex] ............(1)
where,
[tex]\Delta G_{rxn}[/tex] = Gibbs free energy for the reaction = ?
[tex]\Delta G_^o[/tex] = standard Gibbs free energy = 1.67 kJ/mol
R = gas constant = [tex]8.314\times 10^{-3}kJ/mole.K[/tex]
T = temperature = 298 K
Q = reaction quotient = 10.0
Now put all the given values in the above formula 1, we get:
[tex]\Delta G_{rxn}=(1.67kJ/mol)+[(8.314\times 10^{-3}kJ/mole.K)\times (298K)\times \ln (10.0)[/tex]
[tex]\Delta G_{rxn}=7.37kJ/mol[/tex]
Thus, the value of [tex]\Delta G_{rxn}[/tex] is, 7.37 kJ/mol
Part B:
Now we have to calculate the value of [tex]\Delta G_{rxn}[/tex].
The formula used for [tex]\Delta G_{rxn}[/tex] is:
[tex]\Delta G_{rxn}=\Delta G^o+RT\ln Q[/tex] ............(1)
where,
[tex]\Delta G_{rxn}[/tex] = Gibbs free energy for the reaction = ?
[tex]\Delta G_^o[/tex] = standard Gibbs free energy = 1.67 kJ/mol
R = gas constant = [tex]8.314\times 10^{-3}kJ/mole.K[/tex]
T = temperature = 298 K
Q = reaction quotient = 0.100
Now put all the given values in the above formula 1, we get:
[tex]\Delta G_{rxn}=(1.67kJ/mol)+[(8.314\times 10^{-3}kJ/mole.K)\times (298K)\times \ln (0.100)[/tex]
[tex]\Delta G_{rxn}=-4.03kJ/mol[/tex]
Thus, the value of [tex]\Delta G_{rxn}[/tex] is, -4.03 kJ/mol
Part C:
Now we have to calculate the value of Q.
The formula used for [tex]\Delta G_{rxn}[/tex] is:
[tex]\Delta G_{rxn}=\Delta G^o+RT\ln Q[/tex] ............(1)
where,
[tex]\Delta G_{rxn}[/tex] = Gibbs free energy for the reaction = 2.50 kJ/mol
[tex]\Delta G_^o[/tex] = standard Gibbs free energy = 1.67 kJ/mol
R = gas constant = [tex]8.314\times 10^{-3}kJ/mole.K[/tex]
T = temperature = 298 K
Q = reaction quotient = ?
Now put all the given values in the above formula 1, we get:
[tex]2.50kJ/mol=(1.67kJ/mol)+[(8.314\times 10^{-3}kJ/mole.K)\times (298K)\times \ln (Q)[/tex]
[tex]Q=1.39[/tex]
Thus, the value of Q for the reaction is, 1.39