Respuesta :
Answer: The equilibrium concentration of ICl is 0.27 M
Explanation:
We are given:
Initial moles of iodine gas = 0.45 moles
Initial moles of chlorine gas = 0.45 moles
Volume of the flask = 2.0 L
The molarity is calculated by using the equation:
[tex]\text{Molarity}=\frac{\text{Number of moles}}{\text{Volume}}[/tex]
Initial concentration of iodine gas = [tex]\frac{0.45}{2}=0.225M[/tex]
Initial concentration of chlorine gas = [tex]\frac{0.45}{2}=0.225M[/tex]
For the given chemical equation:
[tex]2ICl(g)\rightarrow I_2(g)+Cl_2(g);K_c=0.11[/tex]
As, the initial moles of iodine and chlorine are given. So, the reaction will proceed backwards.
The chemical equation becomes:
[tex]I_2(g)+Cl_2(g)\rightarrow 2ICl(g);K_c=\frac{1}{0.11}=9.091[/tex]
Initial: 0.225 0.225
At eqllm: 0.225-x 0.225-x 2x
The expression of [tex]K_c[/tex] for above equation follows:
[tex]K_c=\frac{[ICl]^2}{[Cl_2][I_2]}[/tex]
Putting values in above equation, we get:
[tex]9.091=\frac{(2x)^2}{(0.225-x)\times (0.225-x)}\\\\x=0.135,0.668[/tex]
Neglecting the value of x = 0.668 because equilibrium concentration cannot be greater than the initial concentration
So, equilibrium concentration of ICl = 2x = (2 × 0.135) = 0.27 M
Hence, the equilibrium concentration of ICl is 0.27 M