Respuesta :

Option A:

The value [tex]\frac{ 64}{49} }[/tex] is equivalent to the given expression.

Solution:

To find which value is equivalent  to the given expression:

Let us first simplify the given expression.

[tex]$\left(\frac{8 \cdot 4 \cdot 2}{8 \cdot 7}\right)^{2} \times\left(\frac{8^{0}}{7^{-3}}\right)^{3} \times 7^{-9}[/tex]

Cancel the common factors.

[tex]$\left(\frac{ 4 \cdot 2}{ 7}\right)^{2} \times\left(\frac{8^{0}}{7^{-3}}\right)^{3} \times 7^{-9}[/tex]

Using exponent rule: [tex]a^0=1[/tex]

[tex]$\left(\frac{ 8}{ 7}\right)^{2} \times\left(\frac{1}{7^{-3}}\right)^{3} \times 7^{-9}[/tex]

[tex]$\frac{ 8^{2} }{ 7^{2} }\times\frac{1^{3} }{(7^{-3})^{3} }\times 7^{-9}[/tex]

Using exponent rule: [tex](a^m)^n=a^{mn}[/tex] in the denominator

[tex]$\frac{ 8^{2} }{ 7^{2} }\times\frac{1^{3} }{7^{-9} }\times 7^{-9}[/tex]

[tex]$\frac{ 64}{49} }\times\frac{1 }{7^{-9} }\times 7^{-9}[/tex]

Using exponent rule: [tex]\frac{1}{a^m} =a^{-m}[/tex]

[tex]$\frac{ 64}{49} }\times7^9\times 7^{-9}[/tex]

Using exponent rule: [tex]a^m\times a^{-m} =1[/tex]

[tex]$\frac{ 64}{49} }\times1[/tex]

[tex]$\Rightarrow\frac{ 64}{49} }[/tex]

Option A is the correct answer.

Hence [tex]\frac{ 64}{49} }[/tex] is equivalent to the given expression.

ACCESS MORE