Answer:
2.62 seconds
Step-by-step explanation:
Let
t ----> the time in seconds
h(t) ----> he height of the ball, in feet
we have
[tex]h(t)=-16t^2+40t+5[/tex]
we know that
When the ball hits the ground, the height is equal to zero
so
[tex]-16t^2+40t+5=0[/tex]
The formula to solve a quadratic equation of the form
[tex]at^{2} +bt+c=0[/tex]
is equal to
[tex]t=\frac{-b\pm\sqrt{b^{2}-4ac}} {2a}[/tex]
in this problem we have
[tex]-16t^2+40t+5=0[/tex]
so
[tex]a=-16\\b=40\\c=5[/tex]
substitute in the formula
[tex]t=\frac{-40\pm\sqrt{40^{2}-4(-16)(5)}} {2(-16)}[/tex]
[tex]t=\frac{-40\pm\sqrt{1,920}} {-32}[/tex]
[tex]t=\frac{-40+\sqrt{1,920}} {-32}=-0.12\ sec[/tex]
[tex]t=\frac{-40-\sqrt{1,920}} {-32}=2.62\ sec[/tex]
therefore
The solution is t=2.62 seconds