A particle with charge − 2.74 × 10 − 6 C −2.74×10−6 C is released at rest in a region of constant, uniform electric field. Assume that gravitational effects are negligible. At a time 6.36 s 6.36 s after it is released, the particle has a kinetic energy of 6.65 × 10 − 10 J. 6.65×10−10 J. At what time t t after the particle is released has it traveled through a potential difference of 0.351 V

Respuesta :

Answer:

241.7 s

Explanation:

We are given that

Charge of particle=[tex]q=-2.74\times 10^{-6} C[/tex]

Kinetic energy of particle=[tex]K_E=6.65\times 10^{-10} J[/tex]

Initial time=[tex]t_1=6.36 s[/tex]

Final potential difference=[tex]V_2=0.351 V[/tex]

We have to find the time t after that the particle is released and traveled through a potential difference 0.351 V.

We know that

[tex]qV=K.E[/tex]

Using the formula

[tex]2.74\times 10^{-6}V_1=6.65\times 10^{-10} J[/tex]

[tex]V_1=\frac{6.65\times 10^{-10}}{2.74\times 10^{-6}}=2.43\times 10^{-4} V[/tex]

Initial voltage=[tex]V_1=2.43\times 10^{-4} V[/tex]

[tex]\frac{\initial\;voltage}{final\;voltage}=(\frac{initial\;time}{final\;time})^2[/tex]

Using the formula

[tex]\frac{V_1}{V_2}=(\frac{6.36}{t})^2[/tex]

[tex]\frac{2.43\times 10^{-4}}{0.351}=\frac{(6.36)^2}{t^2}[/tex]

[tex]t^2=\frac{(6.36)^2\times 0.351}{2.43\times 10^{-4}}[/tex]

[tex]t=\sqrt{\frac{(6.36)^2\times 0.351}{2.43\times 10^{-4}}}[/tex]

[tex]t=241.7 s[/tex]

Hence, after 241.7 s the particle is released has it traveled through a potential difference of 0.351 V.

ACCESS MORE