Answer:
241.7 s
Explanation:
We are given that
Charge of particle=[tex]q=-2.74\times 10^{-6} C[/tex]
Kinetic energy of particle=[tex]K_E=6.65\times 10^{-10} J[/tex]
Initial time=[tex]t_1=6.36 s[/tex]
Final potential difference=[tex]V_2=0.351 V[/tex]
We have to find the time t after that the particle is released and traveled through a potential difference 0.351 V.
We know that
[tex]qV=K.E[/tex]
Using the formula
[tex]2.74\times 10^{-6}V_1=6.65\times 10^{-10} J[/tex]
[tex]V_1=\frac{6.65\times 10^{-10}}{2.74\times 10^{-6}}=2.43\times 10^{-4} V[/tex]
Initial voltage=[tex]V_1=2.43\times 10^{-4} V[/tex]
[tex]\frac{\initial\;voltage}{final\;voltage}=(\frac{initial\;time}{final\;time})^2[/tex]
Using the formula
[tex]\frac{V_1}{V_2}=(\frac{6.36}{t})^2[/tex]
[tex]\frac{2.43\times 10^{-4}}{0.351}=\frac{(6.36)^2}{t^2}[/tex]
[tex]t^2=\frac{(6.36)^2\times 0.351}{2.43\times 10^{-4}}[/tex]
[tex]t=\sqrt{\frac{(6.36)^2\times 0.351}{2.43\times 10^{-4}}}[/tex]
[tex]t=241.7 s[/tex]
Hence, after 241.7 s the particle is released has it traveled through a potential difference of 0.351 V.