Respuesta :
Answer:
[tex]L=4.19*10^{-6}H[/tex]
Explanation:
The self-inductance of a solenoid is defined as:
[tex]L=\frac{\mu N^2A}{l}[/tex]
Here [tex]\mu_0[/tex] is the the permeability of free space, N is the number of turns in the solenoid, A is the cross-sectional area os the solenoid and l its length. We replace the given values to get the self-inductance:
[tex]L=\frac{4\pi*10^{-7}\frac{T\cdot m}{A}(100)^2(1*10^{-4}m^2)}{30*10^{-2}m}\\L=4.19*10^{-6}H[/tex]
The self-inductance of a solenoid is [tex]4.19 \times 10^{-6}H[/tex]
The formula for calculating the self-inductance is expressed as:
[tex]L = \frac{\mu N^2A}{l}[/tex]
where:
[tex]\mu_0[/tex] is the permeability of free space
N is the number of turns in the solenoid
A is the cross-sectional area of the solenoid
l is its length.
Given the following parameters:
[tex]\mu_0 = 4\pi \times 10^{-7} T \cdot m/A[/tex]
N = 100 turns
A = [tex]1.0 \times 10^{-4}m^2[/tex]
l = 30.0cm = 0.3m
Substitute the given parameters into the formula
[tex]L=\frac{4\pi \times 10^{-7} \times 100^2 \times 1.00\times 10^{-4}}{0.3}\\L =4.19 \times 10^{-6}H[/tex]
Hence the self-inductance of a solenoid is [tex]4.19 \times 10^{-6}H[/tex]
Learn more here: https://brainly.com/question/17448015