Answer:
The change of the bar's length is [tex] 3.9\times10^{-4} m[/tex]
Explanation:
The bar length is a function of temperature T above room temperature:
[tex] L(T)=1.0000+2.4\times10^{-5} T[/tex]
So, if we evaluate at T= 16.1 C above room temperature
[tex]L(16.1)=1.0000+2.4\times10^{-5} (16.1)[/tex]
[tex]L=1.00039 m [/tex]
Now we can find the change of the bar length with the difference of L and Lo (the length at room temperature)
[tex]L- L_0=1.00039-1.0000 = 3.9\times10^{-4} m[/tex]