Answer:
a) 420.2 meters per second
b) --6179846.4 joules
Explanation:
Using conservation of energy:
[tex] K_i+U_i=K_f+U_f [/tex]
with Ki the initial kinetic energy, Kf the final kinetic energy, Ui the initial potential energy and Uf the final potential energy.
[tex]\frac{mV_i^2} {2}+mgh_i=\frac{mV_f^2} {2}+mgh_f[/tex] (2)
With Vi the initial velocity, Vf the final velocity, m the mass of the skydiver , g the gravitational acceleration, hi the initial altitude and hf the final altitude
Solving (2) for Vf:
[tex]Vf=\sqrt{\frac{2}{m}(\frac{mV_i^2} {2}+mgh_i-mgh_f)} [/tex]
Vi is zero because they are unmoving when they leap out of their plane, hi is 10km and hf is 1 km:
[tex]Vf=\sqrt{\frac{2}{70}((70)(9.81)(10000)-(70)(9.81)(1000))}=420.2 \frac{m}{s} [/tex]
By work-energy theorem:
[tex]W=\Delta K=K_g-K_f [/tex]
with W the total work and ΔK the change on kinetic energy and Kg kinetic energy at ground level
[tex]W=K_g-K_f=\frac{mV_g^2}{2}-\frac{mV_f^2}{2} [/tex]
[tex] W=\frac{(70)(1)^2}{2}-\frac{(70)(420.2)^2}{2}=-6179846.4 J[/tex]