Respuesta :
Explanation:
As it is given that no change in the internal energy is taking place so, transfer of heat will be equal to the work done by the system. Hence, we will obtain the final volume as follows.
W = [tex]-\int_{V_{1}}^{V_{2}}P dV[/tex]
= [tex]-mRT \int_{V_{1}}^{V_{2}} \frac{1}{V} dV[/tex]
= [tex]-P_{1}V_{1} ln \frac{V_{2}}{V_{1}}[/tex]
[tex]V_{2} = V_{1} e^{\frac{-W}{P_{1}V_{1}}}[/tex]
= [tex]0.6 \times e^{\frac{-60}{100.06}} m^{3}[/tex]
= 0.221 [tex]m^{3}[/tex]
Now, using the volume ratio we will determine the volume ratio as follows.
[tex]P_{2} = P_{1} \times \frac{V_{1}}{V_{2}}[/tex]
= [tex]100 \times \frac{0.6}{0.221} kPa[/tex]
= 271.5 kPa
thus, we can conclude that volume is 0.221 [tex]m^{3}[/tex] and pressure is 271.5 kPa at the end of the process.
Answer:
The volume and the pressure at the end of the process is 0.1497 m³ and 480.961 kPa.
Explanation:
Given that,
Initial pressure = 120 kPa
Volume = 0.6 m³
Heat = 60 kJ
We need to calculate the volume
Using formula of work done
[tex]W=P_{i}V_{i}\ ln(\dfrac{V_{f}}{V_{i}})[/tex]
Put the value into the formula
[tex]-100\times10^{3}=120\times10^{3}\times0.6\ ln(\dfrac{V_{f}}{0.6})[/tex]
[tex]-100=72\ ln(\dfrac{V_{f}}{0.6})[/tex]
[tex]\dfrac{-100}{72}=ln(\dfrac{V_{f}}{0.6})[/tex]
[tex]e^{-1.388}=\dfrac{V_{f}}{0.6}[/tex]
[tex]V_{f}=e^{-1.388}\times0.6[/tex]
[tex]V_{f}=0.1497\ m^3[/tex]
We need to calculate the pressure
Using formula of pressure
[tex]P_{2}=\dfrac{P_{1}V_{1}}{V_{2}}[/tex]
Put the value into the formula
[tex]P_{2}=\dfrac{120\times10^{3}\times0.6}{0.1497}[/tex]
[tex]P_{2}=480961.9\ Pa[/tex]
[tex]P_{2}=480.961\ kPa[/tex]
Hence, The volume and the pressure at the end of the process is 0.1497 m³ and 480.961 kPa.