Respuesta :

The missing coordinate r is 11.

Solution:

Given points are (–15, 1) and (–7, r).

[tex]x_{1}=-15, x_{2}=-7, y_{1}=1 \text { and } y_{2}=7[/tex]

Slope (m) = [tex]\frac{5}{4}[/tex]

To find the missing coordinate r:

Slope formula:

[tex]$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$[/tex]

Substitute the given values in the formula.

[tex]$\frac{5}{4}=\frac{r-1}{-7-(-15)}[/tex]

[tex]$\frac{5}{4}=\frac{r-1}{-7+15}[/tex]

[tex]$\frac{5}{4}=\frac{r-1}{8}[/tex]

Do cross multiplication.

[tex]8 \times 5=4(r-1)[/tex]

40 = 4r – 4

Add 4 on both side of the equation.

44 = 4r

Divide by 4 on both side of the equation.

11 = r

r = 11

Hence the missing coordinate r is 11.

ACCESS MORE