Earthquakes are essentially sound waves—called seismic waves—traveling through the earth. Because the earth is solid, it can support both longitudinal and transverse seismic waves. The speed of longitudinal waves, called P waves, is 8000 m/s. Transverse waves, called S waves, travel at a slower 4500 m/s. A seismograph records the two waves from a distant earthquake. The S wave arrives 2.0 min after the P wave. Assume that the waves travel in straight lines, although actual seismic waves follow more complex routes. If the S wave arrives 2.3 min after the P wave, how far away was the earthquake?

Respuesta :

Answer:

1230 km  

Explanation:

From the time delay, we can write:

[tex]t_{s} -t_{p} =[/tex]Δt

Knowing that t =[tex]\frac{d}{v}[/tex]  we rewrite the formula as  

[tex]\frac{d}{vs} -\frac{d}{vp} =d(\frac{1}{vp}-\frac{1}{vs} )[/tex]=Δt

From this we can find the distance to be  

[tex]d=\frac{v_{s} v_{p} }{v_{p}-v_{s} }[/tex]*Δt

   = 1230 km  

ACCESS MORE