In an insulated container, 0.50 kg of water at 80°C is mixed with 0.050 kg of ice at −5.0°C. After a while, all the ice melts, leaving only the water. Find the final temperature [tex]T_f[/tex] of the water. The freezing point of water is 0°C.

Respuesta :

Answer:

[tex]T_f=68.808\ ^{\circ}C[/tex]

Explanation:

Given:

  • mass of water, [tex]m_w=0.5\ kg[/tex]
  • initial temperature of water, [tex]T_{wi}=80^{\circ}C[/tex]
  • mass of ice, [tex]m_i=0.05\ kg[/tex]
  • initial temperature of ice, [tex]T_{ii}=-5^{\circ}C[/tex]
  • Specific heat capacity of water, [tex]c_w=4186\ J.kg^{-1}.K^{-1}[/tex]
  • Specific heat capacity of ice, [tex]c_i=2100\ J.kg^{-1}.K^{-1}[/tex]
  • Latent heat of fusion of ice, [tex]L=335000\ J.kg^{-1}[/tex]

Now according to the given that the whole ice melts:

using energy conservation with heat,

[tex]m_i.c_i.(T_f-T_i)+m_i.L+m_w.c_w.(T_f-T_i)=0[/tex]

[tex]m_i.c_i.(T_f-T_i)+m_i.L=m_w.c_w.(T_i-T_f)[/tex]

[tex]0.05\times 2100\times (T_f-(-5))+0.05\times 335000=0.5\times 4186\times (80-T_f)[/tex]

[tex]T_f=68.808\ ^{\circ}C[/tex]

The final temperature of water is [tex]T_f =68.808^oC[/tex]

Given:

mass of water,  [tex]m_w=0.50kg[/tex]

initial temperature of water, [tex]T_{wi}=80^oC[/tex]

mass of ice, [tex]m_i=0.050kg[/tex]

initial temperature of ice, [tex]T_{ii}=-5^oC[/tex]

we know, Specific heat capacity of water, [tex]c_w=4186J.kg^{-1}.K^{-1}[/tex]

Specific heat capacity of ice, [tex]c_i=2100 J.kg^{-1}K^{-1}[/tex]

Latent heat of fusion of ice, [tex]L=335000J.kg^{-1}[/tex]

It is given in the question that after a while, all the ice melts, leaving only the water.

Heat is a form of energy, heat is conserved, i.e., it cannot be created or destroyed. It can, however, be transferred from one place to another.

Using energy conservation with heat,

[tex]m_i.c_i(T_f-T_i)+m_iL+m_w.c_w(T_f-T_i)=0\\\\m_i.c_i(T_f-T_i)+m_iL= - m_w.c_w(T_f-T_i)\\\\0.05*2100*T_f-(-5)+ 0.05*335000= -0.5*4186*(80-T_f)\\\\T_f= 68.808^oC[/tex]

Learn more:

brainly.com/question/23458274

ACCESS MORE