Respuesta :
Answer:
[tex]T_f=68.808\ ^{\circ}C[/tex]
Explanation:
Given:
- mass of water, [tex]m_w=0.5\ kg[/tex]
- initial temperature of water, [tex]T_{wi}=80^{\circ}C[/tex]
- mass of ice, [tex]m_i=0.05\ kg[/tex]
- initial temperature of ice, [tex]T_{ii}=-5^{\circ}C[/tex]
- Specific heat capacity of water, [tex]c_w=4186\ J.kg^{-1}.K^{-1}[/tex]
- Specific heat capacity of ice, [tex]c_i=2100\ J.kg^{-1}.K^{-1}[/tex]
- Latent heat of fusion of ice, [tex]L=335000\ J.kg^{-1}[/tex]
Now according to the given that the whole ice melts:
using energy conservation with heat,
[tex]m_i.c_i.(T_f-T_i)+m_i.L+m_w.c_w.(T_f-T_i)=0[/tex]
[tex]m_i.c_i.(T_f-T_i)+m_i.L=m_w.c_w.(T_i-T_f)[/tex]
[tex]0.05\times 2100\times (T_f-(-5))+0.05\times 335000=0.5\times 4186\times (80-T_f)[/tex]
[tex]T_f=68.808\ ^{\circ}C[/tex]
The final temperature of water is [tex]T_f =68.808^oC[/tex]
Given:
mass of water, [tex]m_w=0.50kg[/tex]
initial temperature of water, [tex]T_{wi}=80^oC[/tex]
mass of ice, [tex]m_i=0.050kg[/tex]
initial temperature of ice, [tex]T_{ii}=-5^oC[/tex]
we know, Specific heat capacity of water, [tex]c_w=4186J.kg^{-1}.K^{-1}[/tex]
Specific heat capacity of ice, [tex]c_i=2100 J.kg^{-1}K^{-1}[/tex]
Latent heat of fusion of ice, [tex]L=335000J.kg^{-1}[/tex]
It is given in the question that after a while, all the ice melts, leaving only the water.
Heat is a form of energy, heat is conserved, i.e., it cannot be created or destroyed. It can, however, be transferred from one place to another.
Using energy conservation with heat,
[tex]m_i.c_i(T_f-T_i)+m_iL+m_w.c_w(T_f-T_i)=0\\\\m_i.c_i(T_f-T_i)+m_iL= - m_w.c_w(T_f-T_i)\\\\0.05*2100*T_f-(-5)+ 0.05*335000= -0.5*4186*(80-T_f)\\\\T_f= 68.808^oC[/tex]
Learn more:
brainly.com/question/23458274