Respuesta :
Answer:
The charge on the droplet is [tex]3.106\times10^{-16}\ C[/tex].
Yes, quantization of charge is obeyed within experimental error.
Explanation:
Given that,
Radius = 1.6μm
Electric field = 46 N/C
Density of oil = 0.085 g/cm³
We need to calculate the charge on the droplet
Using formula of force
[tex]F= qE[/tex]
[tex]mg=qE[/tex]
[tex]V\times\rho\times g=qE[/tex]
[tex]q=\dfrac{V\times\rho}{E}[/tex]
[tex]q=\dfrac{\dfrac{4}{3}\pi\times r^3\times\rho\times g}{E}[/tex]
Put the value into the formula
[tex]q=\dfrac{\dfrac{4}{3}\times\pi\times(1.6\times10^{-6})^3\times85\times9.8}{46}[/tex]
[tex]q=3.106\times10^{-16}\ C[/tex]
We need to calculate the quantization of charge
Using formula of quantization
[tex]n = \dfrac{q}{e}[/tex]
Put the value into the formula
[tex]n=\dfrac{3.106\times10^{-16}}{1.6\times10^{-19}}[/tex]
[tex]n=1941.25[/tex]
Yes, quantization of charge is obeyed within experimental error.
Hence, The charge on the droplet is [tex]3.106\times10^{-16}\ C[/tex].
Yes, quantization of charge is obeyed within experimental error.
Answer:
3.11 x 10^-16 C
Explanation:
radius of drop, r = 1.6 micro metre = 1.6 x 10^-6 m
Electric field, E = 46 N/C
density of oil, d = 0.085 g/cm³ = 85 kg/m³
Let the charge on the oil drop is q.
So, the weight of the drop is balanced by the electric force on the drop.
mass of drop x g = charge of the drop x electric field
m x g = q E
Volume x density x g = q E
[tex]\frac{4}{3} \pi\times r^{3}\times d\times g = q \times E[/tex]
[tex]\frac{4}{3} \pi\times 1.6^{3}\times 10^{-18}\times 85\times 9.8 = q \times 46[/tex]
q = 3.11 x 10^-16 C
Thus, the charge on the oil drop is 3.11 x 10^-16 C.