Respuesta :
Answer:
She must be launched with a speed of 74.2 m/s.
Explanation:
Hi there!
The equations of the horizontal component of the position vector and the vertical component of the velocity vector are the following:
x = v0 · t · cos θ
vy = v0 · sin θ + g · t
x = horizontal distance traveled at time t.
v0 = initial velocity.
t = time.
θ = launching angle.
vy = vertical component of the velocity vector at time t.
g = acceleration due to gravity (-9.8 m/s²).
To just cross the 520-m gap, the maximum height of the flight must be reached halfway of the gap at 260 m horizontally (see attached figure).
When she is at the maximum height, her vertical velocity is zero. So, when x = 260 m, vy = 0. Using both equations we can solve the system for v0:
x = v0 · t · cos θ
Solving for v0:
v0 = x/ (t · cos θ)
Replacing v0 in the second equation:
vy = v0 · sin θ + g · t
0 = x/(t·cos(56°)) · sin(56°) + g · t
0 = 260 m · tan (56°) / t - 9.8 m/s² · t
9.8 m/s² · t = 260 m · tan (56°) / t
t² = 260 m · tan (56°) / 9.8 m/s²
t = 6.27 s
Now, let's calculate v0:
v0 = x/ (t · cos θ)
v0 = 260 m / (6.27 s · cos(56°))
v0 = 74.2 m/s
She must be launched with a speed of 74.2 m/s.

Answer:
it must be launched at a speed of 74.2 m/s
Explanation:
I really hope this helps