An airplane flying at an altitude of 6 miles passes directly over a radar antenna. When the airplane is 10 miles away (s = 10), the radar detects that the distance s is changing at a rate of 290 miles per hour. What is the speed of the airplane?

Respuesta :

Answer:

Explanation:

Given

altitude of the Plane [tex]h=6\ miles[/tex]

When Airplane is [tex]s=10\ miles[/tex] away

Distance is changing at the rate of [tex]\frac{\mathrm{d} s}{\mathrm{d} t}=290\ mph[/tex]

From diagram we can write as

[tex]h^2+x^2=s^2[/tex]

differentiate above equation w.r.t time

[tex]2h\frac{\mathrm{d} h}{\mathrm{d} t}+2x\frac{\mathrm{d} x}{\mathrm{d} t}=2s\frac{\mathrm{d} s}{\mathrm{d} t}[/tex]

as altitude is not changing therefore [tex]\frac{\mathrm{d} h}{\mathrm{d} t}=0[/tex]

[tex]0+x\frac{\mathrm{d} x}{\mathrm{d} t}=s\frac{\mathrm{d} s}{\mathrm{d} t}[/tex]

at [tex]s=10\ miles\ and\ h=6\ miles[/tex]

substitute the value we get [tex]x=\sqrt{10^2-6^2}=8\ miles[/tex]

[tex]8\times \frac{\mathrm{d} x}{\mathrm{d} t}=10\times 290[/tex]

[tex]\frac{\mathrm{d} x}{\mathrm{d} t}=362.5\ mph[/tex]

Ver imagen nuuk

The speed of the airplane is 335 mile per hour.

From the diagram attached:

Using Pythagoras theorem:

S² = x² + 25   (1)

Differentiating both sides of the equation with respect to t:

[tex]2S\frac{dS}{dt}=2x\frac{dx}{dt}\\\\\frac{dx}{dt}=\frac{S}{x} \frac{dS}{dt}\\\\\\But\ \frac{dS}{dt} =290\ mph, hence:\\\\\frac{dx}{dt}=290\frac{S}{x} \\\\\\When\ S=10:\\\\S^2=x^2+25\\\\10^2=x^2+25\\\\x^2=75\\\\x=5\sqrt{3} \\\\\\\\\frac{dx}{dt}=290\frac{S}{x} \\\\\frac{dx}{dt}=290\frac{10}{5\sqrt{3} } \\\\\\\frac{dx}{dt}=335\ mph[/tex]

The speed of the airplane is 335 mile per hour.

Find out more at: https://brainly.com/question/22610586

Ver imagen raphealnwobi
ACCESS MORE