Answer:
The height h of the tree is 62.0 feet
Step-by-step explanation:
The picture of the question in the attached figure
step 1
Find the length side AC
In the right triangle ABC
[tex]tan(85.8^o)=\frac{AC}{AB}[/tex] ----> by TOA (opposite side divided by the adjacent side)
substitute the given value
[tex]tan(85.8^o)=\frac{AC}{24.8}[/tex]
[tex]AC=tan(85.8^o)(24.8)[/tex]
[tex]AC=337.7\ ft[/tex]
step 2
Find the length side CD (height of the tree)
In the right triangle ACD
[tex]tan(10.4^o)=\frac{CD}{AC}[/tex] ----> by TOA (opposite side divided by the adjacent side)
substitute the given value
[tex]tan(10.4^o)=\frac{CD}{337.7}[/tex]
[tex]CD=tan(10.4^o)(337.7)[/tex]
[tex]CD=62.0\ ft[/tex]