Respuesta :

Answer:

[tex]\frac24{x+15}{40}[/tex]

Step-by-step explanation:

We want to find the sum of [tex](\frac{2}{5}x+\frac{5}{8})+(\frac{1}{5}x-\frac{1}{4})[/tex]

We find the least common denominator to be 40

We collect LCM to obtain:

[tex]\frac{2x*8+5*5+8x-10}{40}[/tex]

We simplify to get

[tex]\frac{16x+25+8x-10}{40}[/tex]Simplify the numerator to obtain:

[tex]\frac{24x+15}{40}[/tex]

Sum of [tex](\frac{2}{5}x+\frac{5}{8})+(\frac{1}{5}x-\frac{1}{4})[/tex] is [tex]\frac{3x}{5}+\frac{3}{8}[/tex]

Step-by-step explanation:

We need to find sum of (Two-fifths x + StartFraction 5 over 8 EndFraction) + (one-fifth x minus one-fourth)

Writing in mathematical form:

[tex](\frac{2}{5}x+\frac{5}{8})+(\frac{1}{5}x-\frac{1}{4})[/tex]

Solving

[tex]\frac{2}{5}x+\frac{5}{8}+\frac{1}{5}x-\frac{1}{4}[/tex]

Combining like terms:

[tex]=\frac{2}{5}x+\frac{1}{5}x+\frac{5}{8}-\frac{1}{4}\\Taking\,\,LCM\\=\frac{2x+x}{5}+\frac{5-1*2}{8}\\=\frac{3x}{5}+\frac{3}{8}[/tex]

So, sum of [tex](\frac{2}{5}x+\frac{5}{8})+(\frac{1}{5}x-\frac{1}{4})[/tex] is [tex]\frac{3x}{5}+\frac{3}{8}[/tex]

ACCESS MORE