Respuesta :
Answer:
[tex]\frac24{x+15}{40}[/tex]
Step-by-step explanation:
We want to find the sum of [tex](\frac{2}{5}x+\frac{5}{8})+(\frac{1}{5}x-\frac{1}{4})[/tex]
We find the least common denominator to be 40
We collect LCM to obtain:
[tex]\frac{2x*8+5*5+8x-10}{40}[/tex]
We simplify to get
[tex]\frac{16x+25+8x-10}{40}[/tex]Simplify the numerator to obtain:
[tex]\frac{24x+15}{40}[/tex]
Sum of [tex](\frac{2}{5}x+\frac{5}{8})+(\frac{1}{5}x-\frac{1}{4})[/tex] is [tex]\frac{3x}{5}+\frac{3}{8}[/tex]
Step-by-step explanation:
We need to find sum of (Two-fifths x + StartFraction 5 over 8 EndFraction) + (one-fifth x minus one-fourth)
Writing in mathematical form:
[tex](\frac{2}{5}x+\frac{5}{8})+(\frac{1}{5}x-\frac{1}{4})[/tex]
Solving
[tex]\frac{2}{5}x+\frac{5}{8}+\frac{1}{5}x-\frac{1}{4}[/tex]
Combining like terms:
[tex]=\frac{2}{5}x+\frac{1}{5}x+\frac{5}{8}-\frac{1}{4}\\Taking\,\,LCM\\=\frac{2x+x}{5}+\frac{5-1*2}{8}\\=\frac{3x}{5}+\frac{3}{8}[/tex]
So, sum of [tex](\frac{2}{5}x+\frac{5}{8})+(\frac{1}{5}x-\frac{1}{4})[/tex] is [tex]\frac{3x}{5}+\frac{3}{8}[/tex]