Respuesta :
Answer:
a) [tex] E(X) =13.5*0.17 + 15.9*0.57 + 19.1*0.26 = 16.324[/tex]
[tex] E(X^2) =13.5^2*0.17 + 15.9^2*0.57 + 19.1^2*0.26 = 269.9348[/tex]
[tex] Var(X) = E(X^2) -[E(X)]^2 = 269.9348-(16.324)^2 = 3.462[/tex]
b) [tex] E(Y)= E(28X-8.5) = E(28X) - E(8.5) = 28 E(X) -8.5[/tex]
And replacing the result from part a we got:
[tex] E(Y) = 28*16.324 -8.5= 448.572[/tex]
c) [tex] Var(28X-8.5) = Var (28X)= 28^2 Var(X)= 784*3.462=2714.208[/tex]
d) [tex] E(H) = E(X -0.02 X^2) = E(X) -0.02 E(X^2) = 16.324-0.02(269.9348)= 10.925[/tex]
Step-by-step explanation:
For this case we have the following probability function given:
x 13.5 15.9 19.1
p(x) 0.17 0.57 0.26
The expected value of a random variable X is the n-th moment about zero of a probability density function f(x) if X is continuous, or the weighted average for a discrete probability distribution, if X is discrete.
The variance of a random variable X represent the spread of the possible values of the variable. The variance of X is written as Var(X).
Part a
We can calculate the expected value with the following formula:
[tex] E(X) = \sum_{i=1}^n X_i P(X_i)[/tex]
And if we replace we got:
[tex] E(X) =13.5*0.17 + 15.9*0.57 + 19.1*0.26 = 16.324[/tex]
For the second moment we can use this definition:
[tex] E(X^2) = \sum_{i=1}^n X^2_i P(X_i)[/tex]
And if we replace we got:
[tex] E(X^2) =13.5^2*0.17 + 15.9^2*0.57 + 19.1^2*0.26 = 269.9348[/tex]
The variance is defined:
[tex] Var(X) = E(X^2) -[E(X)]^2 = 269.9348-(16.324)^2 = 3.462[/tex]
Part b
For this case we define this new random variable Y = 28 X -8.5. And we want to find the expected value, so we have this:
[tex] E(Y)= E(28X-8.5) = E(28X) - E(8.5) = 28 E(X) -8.5[/tex]
And replacing the result from part a we got:
[tex] E(Y) = 28*16.324 -8.5= 448.572[/tex]
Part c
For the variance we can use the following property:
[tex]Var(X+Y) = Var(X) + Var(Y) + 2 Cov(X,Y)[/tex]
And using this formula we have:
[tex] Var(28X -8.5) = Var(28X)+ Var(8.5)+ 2 Cov(28X,-8.5)[/tex]
The variance for a constant is 0 so then Var(8.5)=0 and Cov(28X, -8.5) = 0 since by properties if X is a random variable and a represent a constant [tex] Cov(X,a)=0[/tex], so then we just have this:
[tex] Var(28X-8.5) = Var (28X)[/tex]
Using the following property [tex] Var(aX)= a^2 Var(X)[/tex] we have:
[tex] Var(28X-8.5) = Var (28X)= 28^2 Var(X)= 784*3.462=2714.208[/tex]
Part d
For this case we define [tex] H = X -0.02 X^2[/tex]
And if we find the expected value we have this:
[tex] E(H) = E(X -0.02 X^2) = E(X) -0.02 E(X^2) = 16.324-0.02(269.9348)= 10.925[/tex]