Answer:
0.74141
Step-by-step explanation:
There are 52 cards in total
since each card is different,
the probability = number of favorable cards / total number of outcomes
P(C₁) = number of favorable cards / total number of outcomes
= [tex]\frac{52}{52}[/tex]
P(C₂, C₁) = number of favorable cards / total number of outcomes
= [tex]\frac{51}{52}[/tex]
P(C₃,C₁ ∩ C₂) = [tex]\frac{50}{52}[/tex]
P(C₄,C₁ ∩ C₂ ∩ C₃) = [tex]\frac{49}{52}[/tex]
P(C₅,C₁ ∩ C₂ ∩ C₃ ∩ C₄) = [tex]\frac{48}{52}[/tex]
P(C₆,C₁ ∩ C₂ ∩ C₃ ∩ C₄ ∩ C₅) = [tex]\frac{47}{52}[/tex]
General multiplication rule
P(A) =P(C₁ ∩ C₂ ∩ C₃ ∩ C₄ ∩ C₅ ∩ C₆)
= [tex]\frac{52}{52}. \frac{51}{52}. \frac{50}{52}. \frac{49}{52}. \frac{48}{52} .\frac{47}{52}[/tex]
= 8,808,975 / 11,881,376
= 0.74141