Assuming complete dissociation of the solute, how many grams of KNO3 must be added to 275 mL of water to produce a solution that freezes at −14.5 ∘C? The freezing point for pure water is 0.0 ∘C and Kf is equal to 1.86 ∘C/m .

Respuesta :

Answer : The mass of KNO₃ added must be, [tex]1.08\times 10^2g[/tex]

Explanation : Given,

Molal-freezing-point-depression constant [tex](K_f)[/tex] for water = [tex]1.86^oC/m[/tex]

Volume of water = 275 mL

Molar mass of KNO₃ = 101.1 g/mole

First we have to calculate the mass of water.

[tex]\text{Mass of water}=\text{Density of water}\times \text{Volume of water}[/tex]

Density of water = 1.00 g/mL

[tex]\text{Mass of water}=1.00g/mL\times 275mL=275g=0.275kg[/tex]

Now we have to calculate the mass of KNO₃

Formula used :  

[tex]\Delta T_f=i\times K_f\times m\\\\T^o-T_s=i\times K_f\times\frac{\text{Mass of }KNO_3}{\text{Molar mass of }KNO_3\times \text{Mass of water in Kg}}[/tex]

where,

[tex]\Delta T_f[/tex] = change in freezing point

[tex]\Delta T_s[/tex] = freezing point of solution = [tex]-14.5^oC[/tex]

[tex]\Delta T^o[/tex] = freezing point of water = [tex]0.0^oC[/tex]

i = Van't Hoff factor = 2  (for KNO₃ electrolyte)

[tex]K_f[/tex] = freezing point constant for water = [tex]1.86^oC/m[/tex]

m = molality

Now put all the given values in this formula, we get

[tex]0.0^oC-(-14.5^oC)=2\times (1.86^oC/m)\times \frac{\text{Mass of }KNO_3}{101.1g/mol\times 0.275kg}[/tex]

[tex]\text{Mass of }KNO_3=108.369g=1.08\times 10^2g[/tex]

Therefore, the mass of KNO₃ added must be, [tex]1.08\times 10^2g[/tex]

ACCESS MORE