Respuesta :

Answer:

[tex]x=4\sqrt{3},\:x=-4\sqrt{3}[/tex] are the roots.

Step-by-step explanation:

[tex]x=4\sqrt{3},\:x=-4\sqrt{3}[/tex]

Considering the expression

[tex]x^2\:-\:48[/tex]

Solving

[tex]x^2-48=0[/tex]

[tex]x^2-48+48=0+48[/tex]

[tex]x^2=48[/tex]

[tex]\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}[/tex]

[tex]x=\sqrt{48},\:x=-\sqrt{48}[/tex]

Solving

[tex]x=\sqrt{48}[/tex]

  = [tex]\sqrt{2^4\cdot \:3}[/tex]

  [tex]\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b}[/tex]

  = [tex]\sqrt{3}\sqrt{2^4}[/tex]

  [tex]\mathrm{Apply\:radical\:rule}:\quad \sqrt[n]{a^m}=a^{\frac{m}{n}}[/tex]

  [tex]\sqrt{2^4}=2^{\frac{4}{2}}=2^2[/tex]

  [tex]=2^2\sqrt{3}[/tex]

  [tex]=4\sqrt{3}[/tex]

So,

[tex]x=4\sqrt{3}[/tex]

Similarly,

[tex]x=-\sqrt{48}=-4\sqrt{3}[/tex]

Therefore, [tex]x=4\sqrt{3},\:x=-4\sqrt{3}[/tex] are the roots.

Keywords: roots, expression

Learn more about roots from brainly.com/question/3731376

#learnwithBrainly

Answer:

The solutions are  [tex]x=4\sqrt{3}[/tex] an [tex]x=-4\sqrt{3}[/tex]

Step-by-step explanation:

We want to find the root of the quadratic function [tex]f(x)=x^2-48[/tex]

To find the roots of this function, we set f(x)=0

This implies that:

[tex]x^2-48=0[/tex]

This implies that:

[tex]x^2=48[/tex]

Take square root to get;

[tex]x=\pm \sqrt{48}[/tex]

[tex]x=\pm4\sqrt{3}[/tex]

Therefore the solutions are  [tex]x=4\sqrt{3}[/tex] an [tex]x=-4\sqrt{3}[/tex]

ACCESS MORE