A single shelf holds 27 books. On one particular shelf, 8 books are best sellers. If you choose to read 3 of them randomly, what is the probability all 3 chosen are best sellers? Give your answer as an exact fraction and reduce the fraction as much as possible.

Respuesta :

Answer:

The probability of all chosen be the best:

                                             [tex]\frac{\frac{8\cdot 7\cdot 6}{3!}}{\frac{27\cdot 26\cdot 25}{3!}}=\frac{8\cdot 7\cdot 6}{27\cdot 26\cdot 25}[/tex]

                                                        [tex]=\frac{56}{2952}[/tex]

To determine:

Step-by-step explanation:

If you choose to read 3 of them randomly, what is the probability all 3 chosen are best sellers?

Information Fetching and Solution Steps:

  • A single shelf holds 27 books.
  • On one particular shelf, 8 books are best sellers.
  • We have to choose to read 3 of them randomly

The formula to find the number of possible combinations

of 3 books from 27 books where order doesn't matter

                                 [tex]C\left(n,k\right)=\frac{n!}{k!\left(n-k\right)!}[/tex]

So,

                                  [tex]\:\:C\left(27,\:3\right)=\frac{27!}{3!\left(27-3\right)!}[/tex]

                                                  [tex]=\frac{27!}{3!24!}[/tex]

                                                  [tex]=\frac{27\cdot 26\cdot 25}{3!}[/tex]

And

The formula for the number of combinations of 3 vest sellers from 8 books will be:

                                  [tex]C\left(8,\:3\right)=\frac{8!}{3!\left(8-3\right)!}[/tex]

                                                [tex]=\frac{8!}{3!5!}[/tex]

                                                [tex]=\frac{8\cdot 7\cdot 6}{3!}[/tex]

So, the probability of all chosen be the best:

                                             [tex]\frac{\frac{8\cdot 7\cdot 6}{3!}}{\frac{27\cdot 26\cdot 25}{3!}}=\frac{8\cdot 7\cdot 6}{27\cdot 26\cdot 25}[/tex]

                                                        [tex]=\frac{56}{2952}[/tex]

Keywords: probability, combination

Learn more about combination from brainly.com/question/12725706

#learnwithBrainly

Answer:

[tex]\large\boxed{\large\boxed{{\text{Probability all 3 chosen are best sellers}=56/2,925}}}[/tex]

Explanation:

1. Number of possible combinations

The number of possible combinations of 3 books from 27 books, whre the order does not matter, is given by the combinatory formula:

         [tex]C(n,k)=\frac{n!}{k!(n-k)!}[/tex]

        [tex]C(27,3)=\frac{27!}{3!(27-3)!}=\frac{27!}{3!24!}=\frac{27\cdot 26\cdot 25}{3!}[/tex]

2. Number of combinations of 3 bestsellers from 8 books that are best sellers

         [tex]C(8,3)=\frac{8!}{3!(8-3)!}=\frac{8!}{3!5!}=\frac{8\cdot 7\cdot 6}{3!}[/tex]

3. Probability of all chosen are best sellers

   [tex]\text{Probability of all chosen are best sellers}=\frac{\text{# combinations of 3 best sellers}}{\text{# total combinations}}[/tex]

   [tex]\text{Probability of all chosen are best sellers}=\frac{\frac{8\cdot 7\cdot 6}{3!}}{\frac{27\cdot 26\cdot 25}{3!}}=\frac{8\cdot 7\cdot 6}{27\cdot 26\cdot 25}[/tex]

    [tex]\text{Probability of all chosen are best sellers}=\frac{336}{17,550}\\\\ \text{Probability of all chosen are best sellers}=\frac{56}{2,925}[/tex]

ACCESS MORE
EDU ACCESS