Respuesta :
Answer:
The probability of all chosen be the best:
[tex]\frac{\frac{8\cdot 7\cdot 6}{3!}}{\frac{27\cdot 26\cdot 25}{3!}}=\frac{8\cdot 7\cdot 6}{27\cdot 26\cdot 25}[/tex]
[tex]=\frac{56}{2952}[/tex]
To determine:
Step-by-step explanation:
If you choose to read 3 of them randomly, what is the probability all 3 chosen are best sellers?
Information Fetching and Solution Steps:
- A single shelf holds 27 books.
- On one particular shelf, 8 books are best sellers.
- We have to choose to read 3 of them randomly
The formula to find the number of possible combinations
of 3 books from 27 books where order doesn't matter
[tex]C\left(n,k\right)=\frac{n!}{k!\left(n-k\right)!}[/tex]
So,
[tex]\:\:C\left(27,\:3\right)=\frac{27!}{3!\left(27-3\right)!}[/tex]
[tex]=\frac{27!}{3!24!}[/tex]
[tex]=\frac{27\cdot 26\cdot 25}{3!}[/tex]
And
The formula for the number of combinations of 3 vest sellers from 8 books will be:
[tex]C\left(8,\:3\right)=\frac{8!}{3!\left(8-3\right)!}[/tex]
[tex]=\frac{8!}{3!5!}[/tex]
[tex]=\frac{8\cdot 7\cdot 6}{3!}[/tex]
So, the probability of all chosen be the best:
[tex]\frac{\frac{8\cdot 7\cdot 6}{3!}}{\frac{27\cdot 26\cdot 25}{3!}}=\frac{8\cdot 7\cdot 6}{27\cdot 26\cdot 25}[/tex]
[tex]=\frac{56}{2952}[/tex]
Keywords: probability, combination
Learn more about combination from brainly.com/question/12725706
#learnwithBrainly
Answer:
[tex]\large\boxed{\large\boxed{{\text{Probability all 3 chosen are best sellers}=56/2,925}}}[/tex]
Explanation:
1. Number of possible combinations
The number of possible combinations of 3 books from 27 books, whre the order does not matter, is given by the combinatory formula:
[tex]C(n,k)=\frac{n!}{k!(n-k)!}[/tex]
[tex]C(27,3)=\frac{27!}{3!(27-3)!}=\frac{27!}{3!24!}=\frac{27\cdot 26\cdot 25}{3!}[/tex]
2. Number of combinations of 3 bestsellers from 8 books that are best sellers
[tex]C(8,3)=\frac{8!}{3!(8-3)!}=\frac{8!}{3!5!}=\frac{8\cdot 7\cdot 6}{3!}[/tex]
3. Probability of all chosen are best sellers
[tex]\text{Probability of all chosen are best sellers}=\frac{\text{# combinations of 3 best sellers}}{\text{# total combinations}}[/tex]
[tex]\text{Probability of all chosen are best sellers}=\frac{\frac{8\cdot 7\cdot 6}{3!}}{\frac{27\cdot 26\cdot 25}{3!}}=\frac{8\cdot 7\cdot 6}{27\cdot 26\cdot 25}[/tex]
[tex]\text{Probability of all chosen are best sellers}=\frac{336}{17,550}\\\\ \text{Probability of all chosen are best sellers}=\frac{56}{2,925}[/tex]