For the given position vectors r(t) compute the unit tangent vector T(t) for the given value of t .


A) Let r(t)=(cos(5t),sin(5t)).

Then T(?4)= (___,___)

B) Let r(t)=(t2,t3).

Then T(4)= (___,___)

C) Let r(t)=e5ti+e?4tj+tk.

Then T(?4)=__i+__j+__k

Respuesta :

Answer:

a) [tex] T(t) = \frac{<-5 sin(5t), 5cos(5t)>}{5}= <-sin(5t), cos(5t)>[/tex]

[tex] T(4) = <-sin(20), cos(20)>[/tex]

b) [tex] T(t) = \frac{<t^2, 3t^2>}{8\sqrt{37}}[/tex]

[tex] T(4) = <\frac{2\sqrt{37}}{37},\frac{6\sqrt{37}}{37} >[/tex]

c) [tex] T(t) = \frac{<5e^{5t}, -4e^{-4t}, 1>}{2425825977}[/tex]

[tex] T(4) = \frac{1}{2425825977}<5e^{50}, -4e^{-16},1 >[/tex]

Step-by-step explanation:

The tangent vector is defined as:

[tex] T(t) = \frac{r'(t)}{|r'(t)|}[/tex]

Part a

For this case we have the following function given:

[tex] r(t) = <cos(5t), sin(5t)>[/tex]

The derivate is given by:

[tex] r'(t) = <-5 sin(5t), 5cos(5t)>[/tex]

The magnitude for the derivate is given by:

[tex] |r'(t)| = \sqrt{25 sin^2(5t) +25 cos^2 (5t)}= 5\sqrt{cos^2 (5t) + sin^2 (5t)} =5[/tex]

And then the tangent vector for this case would be:

[tex] T(t) = \frac{<-5 sin(5t), 5cos(5t)>}{5}= <-sin(5t), cos(5t)>[/tex]

And for the case when t=4 we got:

[tex] T(4) = <-sin(20), cos(20)>[/tex]

Part b

For this case we have the following function given:

[tex] r(t) = <t^2, t^3>[/tex]

The derivate is given by:

[tex] r'(t) = <2t, 3t^2>[/tex]

The magnitude for the derivate is given by:

[tex] |r'(t)| = \sqrt{4t^2 +9t^4}= t\sqrt{4 + 9t^2} [/tex]

[tex] |r'(4)| = \sqrt{4(4)^2 +9(4)^4}= 4\sqrt{4 + 9(4)^2} = 4\sqrt{148}= 8\sqrt{37}[/tex]

And then the tangent vector for this case would be:

[tex] T(t) = \frac{<t^2, 3t^2>}{8\sqrt{37}}[/tex]

And for the case when t=4 we got:

[tex] T(4) = <\frac{2\sqrt{37}}{37},\frac{6\sqrt{37}}{37} >[/tex]

Part c

For this case we have the following function given:

[tex] r(t) = <e^{5t}, e^{-4t} ,t>[/tex]

The derivate is given by:

[tex] r'(t) = <5e^{5t}, -4e^{-4t}, 1>[/tex]

The magnitude for the derivate is given by:

[tex] |r'(t)| = \sqrt{25e^{10t} +16e^{-8t} +1} [/tex]

[tex] |r'(t)| = \sqrt{25e^{10*4} +16e^{-8*4} +1} =2425825977 [/tex]

And then the tangent vector for this case would be:

[tex] T(t) = \frac{<5e^{5t}, -4e^{-4t}, 1>}{2425825977}[/tex]

And for the case when t=4 we got:

[tex] T(4) = \frac{1}{2425825977}<5e^{50}, -4e^{-16},1 >[/tex]