(A) 4 sec the ball is in the air.
(B) Height of the ball = 49 ft.
(C) Yes, the ball is at its maximum height at 1.5 seconds.
Solution:
Given data:
[tex]h(t)=-16t^2+48t+64[/tex]
Initial velocity = 48 ft/s
Height = 64 ft
(A) [tex]-16t^2+48t+64=0[/tex]
a = –16, b = 48, c = 64
We can solve it by using a quadratic formula,
[tex]$\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$[/tex]
[tex]$\Rightarrow t=\frac{-48 \pm \sqrt{(48)^{2}-4 \times(-16)(64)}}{2(-16)}[/tex]
[tex]$\Rightarrow t=\frac{-48 \pm \sqrt{2304+4096}}{-32}[/tex]
[tex]$\Rightarrow t=\frac{-48 \pm \sqrt{6400}}{-32}[/tex]
[tex]$\Rightarrow t=\frac{-48 \pm 80}{-32}[/tex]
[tex]$\Rightarrow t=\frac{-48 + 80}{-32},\frac{-48 - 80}{-32}[/tex]
[tex]$\Rightarrow t=-1,t=4[/tex]
Time cannot be in negative. So neglect t = –1
t = 4 sec
Hence, 4 sec the ball is in the air.
(B) When t = 1.5 sec,
[tex]h(1.5)=-16(1.5)^2+48(1.5)+64[/tex]
h(1.5) = 49 ft
(C) The maximum height occurs at the average of zeros.
Average = [tex]\frac{(-1+4)}{2}=1.5[/tex] sec
Yes, the ball is at its maximum height at 1.5 seconds.