Answer:
[tex]\lambda=1282nm[/tex]
Explanation:
The wavelength of the photons emitted due to an atomic electron transition in a hydrogen atom, is given by the Rydberg formula:
[tex]\frac{1}{\lambda}=R_H(\frac{1}{n_1^2}-\frac{1}{n_2^2}})[/tex]
Here [tex]R_H[/tex] is the Rydberg constant for hydrogen and [tex]n_1,n_2[/tex] are the lower and higher quantum number for the energy levels of the atomic electron transition, respectively. Replacing the given values and solving for [tex]\lambda[/tex]
[tex]\frac{1}{\lambda}=1.097*10^7m^{-1}(\frac{1}{3^2}-\frac{1}{5^2}})\\\frac{1}{\lambda}=7.81*10^5m^{-1}\\\lambda=\frac{1}{7.81*10^5m^{-1}}\\\lambda=1.282*10^{-6}m\\\lambda=1.282*10^{-6}m*\frac{1nm}{10^{-9}m}\\\lambda=1282nm[/tex]