A liquid solvent is added to a flask containing an insoluble solid. The total volume of the solid and liquid together is 84.0 mL. The liquid solvent has a mass of 26.5 g and a density of 0.865 g/mL. Determine the mass of the solid given its density is 3.25 g/mL.

Respuesta :

Answer:

The mass of solid is 173.45 g.

Explanation:

Given that,

Total volume of solid and liquid = 84.0 mL

Mass of liquid = 26.5 g

Density of liquid = 0.865 g/mL

Density of solid = 3.25 g/mL

We need to calculate the volume of liquid

Using formula of density

[tex]\rho_{l}=\dfrac{m_{l}}{V_{l}}[/tex]

[tex]V_{l}=\dfrac{m_{l}}{\rho_{l}}[/tex]

Put the value into the formula

[tex]V_{l}=\dfrac{26.5}{0.865}[/tex]

[tex]V_{l}=30.63\ mL[/tex]

We need to calculate the volume of solid

Volume of solid = Total volume of solid and liquid- volume of liquid

[tex]V_{s}=84.0-30.63[/tex]

[tex]V_{s}=53.37\ mL[/tex]

We need to calculate the mass of solid

Using formula of density

[tex]\rho_{s}=\dfrac{m_{s}}{V_{s}}[/tex]

[tex]m_{s}=\rho_{s}\timesV_{s}[/tex]

Put the value into the formula

[tex]m_{s}=3.25\times53.37[/tex]

[tex]m_{s}=173.45\ g[/tex]

Hence, The mass of solid is 173.45 g.

Answer:

[tex]m_s=173.4335\ g[/tex]

Explanation:

Given:

  • total volume of insoluble solid and a liquid solvent, [tex]V=84\ mL[/tex]
  • mass of liquid, [tex]m_l=26.5\ g[/tex]
  • density of liquid, [tex]\rho_l=0.865\ g.mL^{-1}[/tex]
  • density of solid, [tex]\rho_s=3.25\ g.mL^{-1}[/tex]

Now the volume of liquid:

[tex]V_l=\frac{m_l}{\rho_l}[/tex]

as density is mass per unit volume.

[tex]V_l=\frac{26.5}{0.865}[/tex]

[tex]V_l=30.6358\ mL[/tex]

Therefore the volume of the solid:

[tex]V_s=V-V_l[/tex]

[tex]V_s=84-30.6358[/tex]

[tex]V_s=53.3642\ mL[/tex]

Now the mass of the solid:

[tex]m_s=\rho_s\times V_s[/tex]

[tex]m_s=3.25\times 53.3642[/tex]

[tex]m_s=173.4335\ g[/tex]