Respuesta :
Answer:
The mass of solid is 173.45 g.
Explanation:
Given that,
Total volume of solid and liquid = 84.0 mL
Mass of liquid = 26.5 g
Density of liquid = 0.865 g/mL
Density of solid = 3.25 g/mL
We need to calculate the volume of liquid
Using formula of density
[tex]\rho_{l}=\dfrac{m_{l}}{V_{l}}[/tex]
[tex]V_{l}=\dfrac{m_{l}}{\rho_{l}}[/tex]
Put the value into the formula
[tex]V_{l}=\dfrac{26.5}{0.865}[/tex]
[tex]V_{l}=30.63\ mL[/tex]
We need to calculate the volume of solid
Volume of solid = Total volume of solid and liquid- volume of liquid
[tex]V_{s}=84.0-30.63[/tex]
[tex]V_{s}=53.37\ mL[/tex]
We need to calculate the mass of solid
Using formula of density
[tex]\rho_{s}=\dfrac{m_{s}}{V_{s}}[/tex]
[tex]m_{s}=\rho_{s}\timesV_{s}[/tex]
Put the value into the formula
[tex]m_{s}=3.25\times53.37[/tex]
[tex]m_{s}=173.45\ g[/tex]
Hence, The mass of solid is 173.45 g.
Answer:
[tex]m_s=173.4335\ g[/tex]
Explanation:
Given:
- total volume of insoluble solid and a liquid solvent, [tex]V=84\ mL[/tex]
- mass of liquid, [tex]m_l=26.5\ g[/tex]
- density of liquid, [tex]\rho_l=0.865\ g.mL^{-1}[/tex]
- density of solid, [tex]\rho_s=3.25\ g.mL^{-1}[/tex]
Now the volume of liquid:
[tex]V_l=\frac{m_l}{\rho_l}[/tex]
as density is mass per unit volume.
[tex]V_l=\frac{26.5}{0.865}[/tex]
[tex]V_l=30.6358\ mL[/tex]
Therefore the volume of the solid:
[tex]V_s=V-V_l[/tex]
[tex]V_s=84-30.6358[/tex]
[tex]V_s=53.3642\ mL[/tex]
Now the mass of the solid:
[tex]m_s=\rho_s\times V_s[/tex]
[tex]m_s=3.25\times 53.3642[/tex]
[tex]m_s=173.4335\ g[/tex]