If the electron just misses the upper plate as it emerges from the field, find the magnitude of the electric field.

Respuesta :

Answer:

The magnitude of the electric field be 171.76 N/C so that the electron misses the plate.

Explanation:

As data is incomplete here, so by seeing the complete question from the search the data is

vx_0=1.1 x 10^6

ax=0 As acceleration is zero in the horizontal axis so

Equation of motion in horizontal direction is given as

[tex]s_x=v_x_0 t[/tex]

[tex]t=\frac{s_x}{v_x}\\t=\frac{2 \times 10^{-2}}{1.1 \times 6}\\t=1.82 \times 10^{-8} s[/tex]

Now for the vertical distance

vy_o=0

than the equation of motion becomes

[tex]s_y=v_y_0 t+\frac{1}{2} at^2\\s_y=\frac{1}{2} at^2\\0.5 \times 10^{-2}=\frac{1}{2} a(1.82 \times 10^{-8})^2\\a=3.02 \times 10^{13} m/s^2[/tex]

Now using this acceleration the value of electric field is calculated as

[tex]E=\frac{F}{q}\\E=\frac{ma}{q}\\E=\frac{m_ea}{q_e}\\[/tex]

Here a is calculated above, m is the mass of electron while q is the charge of electron, substituting values in the equation

[tex]E=\frac{9.1\times 10^{-31} \times 3.02 \times 10^{13} }{1.6 \times 10^{-19}}\\E=171.76 N/C[/tex]

So the magnitude of the electric field be 171.76 N/C so that the electron misses the plate.

Ver imagen danialamin
Lanuel

If the electron misses the upper plate, the magnitude of the electric field is equal to 171.88 Newton per coulomb.

Given the following data:

  • Distance = 2 cm to m = 0.02 meter.
  • Vertical speed = [tex]1.6 \times 10^6[/tex] m/s
  • Vertical distance = 1 cm =  [tex]\frac{0.01}{2} = 0.005\;m[/tex]

Scientific data:

  • Mass of electron = [tex]9.1 \times 10^{-31}\;kg[/tex]
  • Charge of electron = [tex]1.6 \times 10^{-19}\;C[/tex]

To calculate the magnitude of the electric field:

First of all, we would determine the time taken by this electron to travel through the plates.

Time in the vertical direction.

Mathematically, time is given by this formula:

[tex]Time = \frac{distance}{speed} \\ \\ Time = \frac{0.02}{1.10 \times 10^6} \\ \\ Time = 1.82 \times 10^{-8}\;m/s[/tex]

Next, we would find the acceleration of the electron in the vertical direction by using this formula:

[tex]a=\frac{2y}{t^2} \\ \\ a=\frac{2 \times 0.005}{(1.82 \times 10^{-8})^2}\\ \\ a=\frac{0.01}{3.31 \times 10^{-16}}\\ \\ a=3.02 \times 10^{13}\;m/s^2[/tex]

The formula for electric field.

Mathematically,  the electric field is given by this formula:

[tex]E=\frac{ma}{q}[/tex]

Where:

  • q is the charge.
  • a is the acceleration.
  • m is the mass.

Substituting the given parameters into the formula, we have;

[tex]E=\frac{9.1 \times 10^{-31} \times 3.02 \times 10^{13}}{1.6 \times 10^{-19}}\\ \\ E=\frac{2.75 \times 10^{-17}}{1.6 \times 10^{-19}}[/tex]

Electric field, E = 171.88 N/C.

Read more on electric field here: https://brainly.com/question/14372859

Complete Question:

An electron is projected with an initial speed v0 = [tex]1.6 \times 10^6[/tex] m/s into the uniform field between the parallel plates. The distance between the plates is 1 cm and the length of the plates is 2 cm. Assume that the field between the plates is uniform and directed vertically downward, and that the field outside the plates is zero. The electron enters the field at a point midway between the plates. E = N/C

(a) If the electron just misses the upper plate as it emerges from the field, find the magnitude of the electric field.