Respuesta :

Answer:

The age of the fossil be [tex]2.1987\times 10^{4} years[/tex].

Explanation:

Formula used :

[tex]N=N_o\times e^{-\lambda t}\\\\\lambda =\frac{0.693}{t_{\frac{1}{2}}}[/tex]

where,

[tex]N_o[/tex] = initial mass of isotope  C-14 = x

N = mass of the parent isotope left after the time, (t)  = 70.0% of x=0.07x

[tex]t_{\frac{1}{2}}[/tex] = half life of the isotope  C-14 = 5730 years

[tex]\lambda[/tex] = rate constant

Let the age of the fossil be t.

Now put all the given values in this formula, we get  t :

[tex]0.07x=x\times e^{-(\frac{0.693}{5730 years})\times t}[/tex]

[tex]t=2.1987\times 10^{4} years[/tex]

The age of the fossil be [tex]2.1987\times 10^{4} years[/tex].