Answer:
The age of the fossil be [tex]2.1987\times 10^{4} years[/tex].
Explanation:
Formula used :
[tex]N=N_o\times e^{-\lambda t}\\\\\lambda =\frac{0.693}{t_{\frac{1}{2}}}[/tex]
where,
[tex]N_o[/tex] = initial mass of isotope C-14 = x
N = mass of the parent isotope left after the time, (t) = 70.0% of x=0.07x
[tex]t_{\frac{1}{2}}[/tex] = half life of the isotope C-14 = 5730 years
[tex]\lambda[/tex] = rate constant
Let the age of the fossil be t.
Now put all the given values in this formula, we get t :
[tex]0.07x=x\times e^{-(\frac{0.693}{5730 years})\times t}[/tex]
[tex]t=2.1987\times 10^{4} years[/tex]
The age of the fossil be [tex]2.1987\times 10^{4} years[/tex].