If the molecular weight of a semiconductor is 27.9 grams/mole and the diamond lattice constant is 0.503 nm, what is the density of the semiconductor in grams/cc ? Two significant digits, fixed point notation.

Respuesta :

Explanation:

The given data is as follows.

      Mass = 27.9 g/mol

As we know that according to Avogadro's number there are [tex]6.023 \times 10^{26}[/tex] atom present in 1 mole. Therefore, weight of 1 atom will be as follows.

            1 atoms weight = [tex]\frac{38}{6.023 \times 10^{26}}[/tex]    

In a diamond cubic cell, the number of atoms are 8. So, n = 8 for diamond cubic cell.

Therefore, total weight of atoms in a unit cell will be as follows.

            = [tex]\frac{8 \times 27.9 g/mol}{6.023 \times 10^{26}}[/tex]

            = [tex]37.06 \times 10^{-26}[/tex]

Now, we will calculate the volume of a lattice with lattice constant 'a' (cubic diamond) as follows.

                   = [tex]a^{3}[/tex]

                   = [tex](0.503 \times 10^{-9})^{3}[/tex]

                   = [tex]0.127 \times 10^{-27} m^{3}[/tex]

Formula to calculate density of diamond cell is as follows.

               Density = [tex]\frac{mass}{volume}[/tex]

                             = [tex]\frac{37.06 \times 10^{-26}}{0.127 \times 10^{-27} m^{3}}[/tex]

                            = 2918.1 [tex]g/m^{3}[/tex]

or,                         = 0.0029 g/cc       (as 1 [tex]m^{3} = 10^{6} cm^{3}[/tex])

Thus, we can conclude that density of given semiconductor in grams/cc is 0.0029 g/cc.