contestada

An electron microscope focuses electrons through magnetic lenses to observe objects at higher magnification than is possible with a light microscope. For any microscope, the smallest object that can be observed is one-half the wavelength of the radiation used. Thus, for example, the smallest object that can be observed with light of 400 nm is 2 x 10⁷ m. (a) What is the smallest object observable with an electron microscope using electrons moving at 5.5 x 10⁴ m/s? (b) At 3.0 x 10⁷ m/s?

Respuesta :

Explanation:

(a)   The given data is as follows.

           Speed of electron (u) = [tex]5.5 \times 10^{4} m/s[/tex]

According to De Broglie's formula,

                wavelength, [tex]\lambda = \frac{h}{mu}[/tex]

where,   h = Planck's constant = [tex]6.626 \times 10^{-34} Js[/tex]

              m = mass of electron = [tex]9.11 \times 10^{-31} kg[/tex]

Hence, we will calculate the wavelength as follows.

           [tex]\lambda = \frac{h}{mu}[/tex]

                      = [tex]\frac{6.626 \times 10^{-34}}{9.11 \times 10^{-31}kg \times 5.5 \times 10^{4} m/s}[/tex]

                      = [tex]0.132 \times 10^{-7}[/tex] m

                      = [tex]13.2 \times 10^{-9}[/tex] m

It is known that for any microscope, smallest object that can be observed is equal to [tex]\frac{1}{2}[/tex] the wavelength of of the radiation  smallest object observable with an electron microscope.

Hence,     [tex]\frac{13.2 \times 10^{-9}}{2}[/tex]

                = [tex]6.6 \times 10^{-9}[/tex] m

               = 6.6 nm          (as 1 m = [tex]10^{-9} nm[/tex])

Therefore, the smallest object observable with an electron microscope will be 6.6 nm.

(b)  At [tex]3.0 \times 10^{7} m/s[/tex], the wavelength will be calculated as follows.

              wavelength, [tex]\lambda = \frac{h}{mu}[/tex]

                                  = [tex]\frac{6.626 \times 10^{-34} Js}{9.11 \times 10^{-31} kg \times 3.0 \times 10^{7} m/s}[/tex]

                                  = [tex]24.2 \times 10^{-12}[/tex] m

As, for any microscope, smallest object that can be observed is equal to [tex]\frac{1}{2}[/tex] the wavelength of of the radiation  smallest object observable with an electron microscope.

                = [tex]\frac{24.2 \times 10^{-12}}{2}[/tex]

                = [tex]12.1 \times 10^{-12} m \times 10^{9}nm/m[/tex]

                = 0.0121 nm

Therefore, at [tex]3.0 \times 10^{7} m/s[/tex]  the smallest object observable with an electron microscope is 0.0121 nm.