Respuesta :
Answer:
The solution to the differential equation
y' = 1 + y²
is
y = tan x
Step-by-step explanation:
Given the differential equation
y' = 1 + y²
This can be written as
dy/dx = 1 + y²
Separate the variables
dy/(1 + y²) = dx
Integrate both sides
tan^(-1)y = x + c
y = tan(x+c)
Using the initial condition
y(0) = 0
0 = tan(0 + c)
tan c = 0
c = tan^(-1) 0 = 0
y = tan x
In this exercise we have to use our knowledge of differential equations to calculate the value of the first solution, so we have to:
[tex]y = tan x[/tex]
Then say the differential equation as:
[tex]y' = 1 + y^2[/tex]
then rewriting as:
[tex]dy/dx = 1 + y^2\\dy/(1 + y^2) = dx[/tex]
Integrate both sides, we have that:
[tex]tan^{(-1)}y = x + c\\y = tan(x+c)[/tex]
So we already have a preview of the solution, so we will have to apply the initial conditions and this results in:
[tex]y(0) = 0\\0 = tan(0 + c)\\tan c = 0\\c = tan^{(-1)} 0 = 0\\y = tan x[/tex]
See more about differential equations at brainly.com/question/2263981