A 90-m-long high-voltage cable is suspended between two towers. The mass of the 90-m cable is 100 kg. If the tension in the cable is 25 000 N, what is the lowest frequency at which this cable can oscillate?

Respuesta :

Answer:

Explanation:

Given

Length of cable [tex]L=90\ m[/tex]

mass of cable [tex]m=100\ kg[/tex]

Tension in the cable [tex]T=25,000\ N[/tex]

The lowest frequency observed is given by

[tex]\nu =\frac{1}{2L}\cdot \sqrt{\frac{T}{\mu }}[/tex]

where [tex]\nu =frequency[/tex]

[tex]\mu =mass\ density(kg/m)[/tex]

[tex]\mu =\frac{100}{90}=\frac{10}{9}\ kg/m[/tex]

[tex]\nu =\frac{1}{2\times 90}\cdot \sqrt{\frac{25,000}{\frac{10}{9}}}[/tex]

[tex]\nu =\frac{5\times 10\times 3}{2\times 90}[/tex]

[tex]\nu =0.833\ Hz[/tex]