y
=
−
(
x
−
2
)
2
+
16
is the vertex form
Explanation:
The vertex form of a quadratic function is given by
y
=
a
(
x
−
h
)
2
+
k
where (h, k) is the vertex of the parabola.
when written in vertex form
(h, k) is the vertex of the parabola and x = h is the axis of symmetry
the h represents a horizontal shift (how far left, or right the graph has shifted from x = 0)
the k represents a vertical shift (how far up, or down the graph has shifted from y = 0)
Now let convert this
y
=
−
x
2
+
4
x
+
12
into vertex form
y
=
−
x
2
+
4
x
+
12
y
−
12
=
−
x
2
+
4
x
y
−
12
=
−
(
x
2
−
4
x
)
y
−
12
=
−
(
x
2
−
4
x
+
4
−
4
)
y
−
12
=
−
(
x
2
−
4
x
+
4
)
+
4
y
−
16
=
−
(
x
2
−
4
x
+
4
)
y
−
16
=
−
(
x
−
2
)
2
y
=
−
(
x
−
2
)
2
+
16
is the vertex form
show the vertex in the figure below
graph{-x^2+4x+12 [-10.06, 15.25, 6.58, 19.25]} Hope iam right