Respuesta :
Answer:
Electric field, E = 300.65 N/C
Explanation:
Given that,
Intensity of a beam of electromagnetic radiation, [tex]I=120\ W/m^2[/tex]
We need to find the maximum value of the electric field. The intensity of electromagnetic wave in terms of electric field is given by :
[tex]I=\dfrac{1}{2}\epsilon_oE^2c[/tex]
c is the speed of light
[tex]E=\sqrt{\dfrac{2I}{\epsilon_o c}}[/tex]
[tex]E=\sqrt{\dfrac{2\times 120}{8.85\times 10^{-12}\times 3\times 10^8}}[/tex]
E = 300.65 N/C
So, the maximum value of the electric field is 300.65 N/C. Hence, this is the required solution.
The maximum value of the electric field for the given beam of electromagnetic radiation.
the electric field of an electromagnetic radiation can be calculated by,
[tex]\bold {I = \dfrac 12 \epsilon_0 E^2C}[/tex]
[tex]\bold {E = \sqrt {\dfrac {2I}{\epsilon_0 C}}}[/tex]
Where,
I - intensity of the beam = 120 W/m2
C- speed of light = [tex]\bold { 3x10^8\ m/s}}[/tex]
E - electric field
Put the value of the formula
[tex]\bold {E = \sqrt {\dfrac {2\times 20 }{8.85x10^{-12} \times 3x10^8}}}\\\\\bold {E = 300.65\ N/C}[/tex]
Therefore, the maximum value of the electric field for the given beam of electromagnetic radiation.
To know more about EM radiation,
https://brainly.com/question/22412143