Respuesta :
To solve this problem we will apply the concept related to the Poisson ratio for which the longitudinal strains are related, versus the transversal strains. First we need to calculate the longitudinal strain as follows
[tex]\epsilon_x = \frac{l_f-l_i}{l_i}[/tex]
[tex]\epsilon_x = \frac{(9.80554)-(9.8)}{9.8}[/tex]
[tex]\epsilon_x = 0.0005653[/tex]
Second we will calculate the lateral strain as follows
[tex]\epsilon_y = \frac{a_f-a_i}{a_i}[/tex]
[tex]\epsilon_y = \frac{2.59952-2.6}{2.6}[/tex]
[tex]\epsilon_y = -0.0001846153[/tex]
The Poisson's ratio is the relation between the two previous strain, then,
[tex]\upsilon = -\frac{\epsilon_y}{\epsilon_x}[/tex]
[tex]\upsilon = -\frac{(-0.0001846153)}{0.0005653}[/tex]
[tex]\upsilon = 0.3265[/tex]
Therefore the Poisson's ratio for the material is 0.3265