Respuesta :

Explanation:

The sped of sound is given as follows.

            C = [tex]\sqrt{\gamma RT}[/tex]

It is known that for hydrogen,

         R = 4124 J/kg K

         T = 288 k

       [tex]\gamma[/tex] = 1.41

Therefore, calculate the value of [tex]C_{hydrogen}[/tex] as follows.

         [tex]C_{hydrogen} = \sqrt{\gamma RT}[/tex]

                     = [tex]\sqrt{1.41 \times 4124 J/kg K \times 288}[/tex]

                     = 1294.1 m/s

For helium,

         R = 2077 J/kg K

         T = 288 k

       [tex]\gamma[/tex] = 1.66

Therefore, calculate the value of [tex]C_{helium}[/tex] as follows.

         [tex]C_{helium} = \sqrt{\gamma RT}[/tex]

                     = [tex]\sqrt{1.66 \times 2077 J/kg K \times 288}[/tex]

                     = 996.48 m/s

For nitrogen,

         R = 296.8 J/kg K

         T = 288 k

       [tex]\gamma[/tex] = 1.4

Therefore, calculate the value of [tex]C_{hydrogen}[/tex] as follows.

         [tex]C_{hydrogen} = \sqrt{\gamma RT}[/tex]

                     = [tex]\sqrt{1.4 \times 296.8 J/kg K \times 288}[/tex]

                     = 345.93 m/s

So, speed of sound in hydrogen is calculated as follows.

            = [tex]\sqrt{1.41 \times 4124 \times T_{H}}[/tex]

            = [tex]76.26 \sqrt{T_{H}}[/tex]

Speed of sound in helium is as follows.

            = [tex]\sqrt{1.66 \times 2077 \times T_{He}}[/tex]

            = [tex]58.72 \sqrt{T_{He}}[/tex]

For both the speeds to be equal,

       [tex]76.26 \sqrt{T_{H}}[/tex] = [tex]58.72 \sqrt{T_{He}}[/tex]

        [tex]\frac{T_{H}}{T_{He}}[/tex] = 0.593

Therefore, we can conclude that the temperature of hydrogen is 0.593 times the temperature of helium.