Answer:
The amount of acid in third container is =42%
Step-by-step explanation:
Given , one container is filled with a mixture that is 30% acid a second container filled with a mixture that is 50% acid and the second container 50% larger than the first .
Let, the volume of first container is = x
Then , the volume of second container = (x+ x of 50%)
= x + 0.5 x
= 1.5 x
Therefore the amount of acid in first container [tex]=x \times \frac{30}{100}[/tex] = 0.3 x
The amount of acid in second container [tex]=1.5x \times \frac{50}{100}[/tex] = 0.75x
Total amount of acid= 0.3x + 0.75x = 1.05 x
Total amount of solution = x+1.5x = 2.5x
The amount of acid in third container is = [tex]\frac{1.05x}{2.5x} \times 100%[/tex] %
= 42%