Respuesta :
Answer:
(1) -0.833
(2) 0.80
(3) 0.70
(4) 390
(5) 90
(7) 48
Step-by-step explanation:
Given:
E (X) = 100, E (Y) = 120, E (Z) = 130
Var (X) = 9, Var (Y) = 16, Var (Z) = 25
Cov (X, Y) = -10, Cov (X, Z) = 12, Cov (Y, Z) = 14
The formulas used for correlation is:
[tex]Corr (A, B) = \frac{Cov (A, B)}{\sqrt{Var (A)\times Var(B)}} \\[/tex]
(1)
Compute the value of Corr (X, Y)-
[tex]Corr (X, Y) = \frac{Cov (X, Y)}{\sqrt{Var (X)\times Var(Y)}} \\=\frac{-10}{\sqrt{9\times16}} \\=-0.833[/tex]
(2)
Compute the value of Corr (X, Z)-
[tex]Corr (X, Z) = \frac{Cov (X, Z)}{\sqrt{Var (X)\times Var(Z)}} \\=\frac{12}{\sqrt{9\times25}} \\=0.80[/tex]
(3)
Compute the value of Corr (Y, Z)-
[tex]Corr (Y, Z) = \frac{Cov (Y, Z)}{\sqrt{Var (Y)\times Var(Z)}} \\=\frac{14}{\sqrt{16\times25}} \\=0.70[/tex]
(4)
Compute the value of E (3X+4Y-3Z)-
[tex]E(3X+4Y-3Z)=3E(X)+4E(Y)-3E(Z)\\=(3\times100)+(4\times120)-(3\times130)\\=390[/tex]
(5)
Compute the value of Var (3X-3Z)-
[tex]Var (3X-3Z)=[(3)^{2}\times Var(X)]+[(-3)^{2}\times Var (Z)]+(2\times3\times-3\times Cov(X, Z)]\\=(9\times9)+(9\times25)-(18\times12)\\=90[/tex]
(6)
Compute the value of Var (3X+4Y-3Z)-
[tex]Var (3X+4Y-3Z)=[(3)^{2}\times Var(X)]+[(4)^{2}\times Var(Y)]+[(-3)^{2}\times Var (Z)]+[(2\times3\times4\times Cov(X, Y)]+[(2\times3\times-3\times Cov(X, Z)]+[(2\times4\times-3\times Cov(Y, Z)]\\=(9\times9)+(16\times16)+(9\times25)+(24\times-10)-(18\times12)-(24\times14)\\=-230[/tex]
But this is not possible as variance is a square of terms.
(7)
Compute the value of Cov (3X, 2Y+3Z)-
[tex]Cov(3X, 2Y+3Z)=Cov(3X,2Y)+Cov(3X, 3Z)\\=6Cov(X, Y)+9Cov(X,Z)\\=(6\times-10)+(9\times12)\\=48[/tex]
The correct answers to the given set of data are:
- (1) -0.833
- 2) 0.80
- (3) 0.70
- (4) 390
- (5) 90
- (7) 48
What is Variance?
This refers to the measurement of spread between numbers which can be found in a set of data.
Hence, to compute the variance and covariance
- E (X) = 100, E (Y) = 120, E (Z) = 130
- Var (X) = 9, Var (Y) = 16, Var (Z) = 25
- Cov (X, Y) = -10, Cov (X, Z) = 12, Cov (Y, Z) = 14
Using the variance formula we can see that the given sets of data are:
- -0.833
- 0.80
- 0.70
- 390
- 90
- 48 respectively
Read more about variance here:
https://brainly.com/question/25639778