How fast must a 56.5-g tennis ball travel in order to have a de Broglie wavelength that is equal to that of a photon of green light (5400 Å)?

Respuesta :

Answer:vv

[tex]v=2.17\times 10^{-26}\ m/s[/tex]

Explanation:

The expression for the deBroglie wavelength is:

[tex]\lambda=\frac {h}{m\times v}[/tex]

Where,  

[tex]\lambda[/tex] is the deBroglie wavelength  

h is Plank's constant having value [tex]6.626\times 10^{-34}\ Js[/tex]

m is the mass of = [tex]56.5\ g=0.0565\ kg[/tex]

v is the speed.

Wavelength = 5400 Å = [tex]5400\times 10^{-10}\ m[/tex]

Applying in the equation as:-

[tex]5400\times 10^{-10}=\frac{6.626\times 10^{-34}}{0.0565\times v}[/tex]

[tex]v=\frac{331300000}{10^{34}\times \:1.5255}\ m/s[/tex]

[tex]v=2.17\times 10^{-26}\ m/s[/tex]