Answer:vv
[tex]v=2.17\times 10^{-26}\ m/s[/tex]
Explanation:
The expression for the deBroglie wavelength is:
[tex]\lambda=\frac {h}{m\times v}[/tex]
Where,
[tex]\lambda[/tex] is the deBroglie wavelength
h is Plank's constant having value [tex]6.626\times 10^{-34}\ Js[/tex]
m is the mass of = [tex]56.5\ g=0.0565\ kg[/tex]
v is the speed.
Wavelength = 5400 Å = [tex]5400\times 10^{-10}\ m[/tex]
Applying in the equation as:-
[tex]5400\times 10^{-10}=\frac{6.626\times 10^{-34}}{0.0565\times v}[/tex]
[tex]v=\frac{331300000}{10^{34}\times \:1.5255}\ m/s[/tex]
[tex]v=2.17\times 10^{-26}\ m/s[/tex]