PLZ HELP THIS IS TIMED!!!!
Which formula can be used to describe the sequence? Negative two-thirds, −4, −24, −144,... f(x) = 6(negative two-thirds) Superscript x minus 1 f(x) = −6(Two-thirds) Superscript x minus 1 f(x) = Negative two-thirds(6)x − 1 f(x) = Two-thirds(−6)x − 1

Respuesta :

Answer:

For the sequence is [tex]-\frac{2}{3}[/tex] ,-4 ,-24 ,-144 ,...

Hence the formula [tex]f(x)=-\frac{2}{3}(6)^{x-1}[/tex] for x=1,2,3,... represents the given geometric sequence

Step-by-step explanation:

Given sequence is [tex]-\frac{2}{3}[/tex] ,-4 ,-24 ,-144 ,...

To find the formula to describe the given sequence :

Let [tex]a_1=\frac{-2}{3}[/tex] ,[tex]a_2=-4[/tex] ,[tex]a_3=-24[/tex],...

First find the common ratio

[tex]r=\frac{a_2}{a_1}[/tex] here  [tex]a_1=\frac{-2}{3}[/tex] and,[tex]a_2=-4[/tex]

[tex]=\frac{-4}{\frac{-2}{3}}[/tex]

[tex]=\frac{4\times 3}{2}[/tex]

[tex]=\frac{12}{2}[/tex]

[tex]r=6[/tex]

[tex]r=\frac{a_3}{a_2}[/tex] here  [tex]a_2=-4[/tex] and [tex]a_3=-24[/tex]

[tex]=\frac{-24}{-4}[/tex]

[tex]=6[/tex]

[tex]r=6[/tex]

Therefore the common ratio is 6

Therefore the given sequence is geometric sequence

The nth term of the geometric sequence is

[tex]a_n=a_1r^{n-1}[/tex]

The formula which describes the given geometric sequence is

[tex]f(x)=a_1r^{x-1}[/tex] for x=1,2,3,...

[tex]=\frac{-2}{3}6^{x-1}[/tex] for x=1,2,3,...

Now verify that [tex]f(x)=a_1r^{x-1}[/tex] for x=1,2,3,... represents the given geometric sequence or not

put x=1 and the value of [tex]a_1[/tex] in [tex]f(x)=a_1r^{x-1}[/tex] for x=1,2,3,...

we get [tex]f(1)=-\frac{2}{3}(6)^{1-1}[/tex]

[tex]=-\frac{2}{3}(6)^0[/tex]

[tex]=-\frac{2}{3}[/tex]

Therefore [tex]f(1)=-\frac{2}{3}[/tex]

put x=2 we get [tex]f(2)=-\frac{2}{3}(6)^{2-1}[/tex]

[tex]=-\frac{2}{3}(6)^1[/tex]

[tex]=-\frac{12}{3}[/tex]

Therefore [tex]f(2)=-4[/tex]

put x=3 we get [tex]f(3)=-\frac{2}{3}(6)^{3-1}[/tex]

[tex]=-\frac{2}{3}(6)^2[/tex]

[tex]=-\frac{2(36)}{3}[/tex]

Therefore [tex]f(3)=-24[/tex]

Therefore the sequence is f(1),f(2),f(3),...

Therefore  the sequence is [tex]-\frac{2}{3}[/tex] ,-4 ,-24 ,-144 ,...

Hence the formula [tex]f(x)=a_1r^{x-1}[/tex] for x=1,2,3,... represents the given geometric sequence is verified

Therefore the formula [tex]f(x)=-\frac{2}{3}(6)^{x-1}[/tex] for x=1,2,3,... represents the given geometric sequence

Answer:

a

Step-by-step explanation: