Answer: The wavelength of the absorbed light is 415 nm or [tex]4150\AA[/tex]
Explanation:
To calculate the wavelength of light, we use the equation:
[tex]\lambda=\frac{c}{\nu}[/tex]
where,
[tex]\lambda[/tex] = wavelength of the light
c = speed of light = [tex]3\times 10^8m/s[/tex]
[tex]\nu[/tex] = frequency of light = [tex]7.23\times 10^{14}Hz=7.23\times 10^{14}s^{-1}[/tex]
Putting the values in above equation, we get:
[tex]\lambda=\frac{3\times 10^8m/s}{7.23\times 10^{14}s^{-1}}=4.15\times 10^{-7}m[/tex]
Converting this into nanometers, we use the conversion factor:
[tex]1m=10^9nm[/tex]
So, [tex]4.15\times 10^{-7}m\times (\frac{10^9nm}{1m})=415nm[/tex]
Converting this into angstroms, we use the conversion factor:
[tex]1m=10^{10}\AA[/tex]
So, [tex]4.15\times 10^{-7}m\times (\frac{10^{10}\AA}{1m})=4150\AA[/tex]
Hence, the wavelength of the absorbed light is 415 nm or [tex]4150\AA[/tex]