Given 10 < x + 12 Choose the solution set.
{x| x∈R, x > 2}
{x| x∈R, x < -2}
{x| x∈R, x > -2}
{x| x∈R, x < 2}
{x| x∈R, x > -4}

Respuesta :

Answer:

{x| x∈R, x > -2}

Step-by-step explanation:

You solve the inequality just like you would solve an equality.

Everything that has the x on the left side, everything without x on the right side.

Be careful that when you multiply by -1, the inequality signal changes(for example, lesser than becomes higher than

So

[tex]10 < x + 12[/tex]

[tex]-x < 12 - 10[/tex]

[tex]-x < 2[/tex]

Multiplying by -1

[tex]x > -2[/tex]

So the correct answer is:

{x| x∈R, x > -2}

{x| x∈R, x > -2}

Step-by-step explanation:

You solve the inequality just like you would solve an equality.

Everything that has the x on the left side, everything without x on the right side.

Be careful that when you multiply by -1, the inequality signal changes(for example, lesser than becomes higher than

So

Multiplying by -1

So the correct answer is:

{x| x∈R, x > -2}