Respuesta :
Yo sup??
The only way to solve this problem is by observing the graph closely and making some approximations.
We have to compare the value of x with the corresponding y value.
at x=4 you will find that the value of y is around 3.8-3.9
Therefore the answer is 3.8
Hope this helps.
Answer:
[tex]f(4) \approx 3.73[/tex]
Step-by-step explanation:
We can see that this function looks like a square root function but only shifted to the right by 1 and up by 2.
A square root function is:
[tex]f(x) = \sqrt{x}[/tex]
Shifting a function up means adding that value to the f(x):
[tex]f(x) = \sqrt{x}+2[/tex]
Shifting a function to the right means replacing a value x with the value (x-the value of shifting a function to the right):
[tex]f(x) = \sqrt{x-1}+2[/tex]
We can check that this really is a graph of a function [tex]f(x) = \sqrt{x-1}+2\\[/tex]:
[tex]f(1) = \sqrt{1-1}+2 = 0+2=2[/tex]
We can see on the graph that this really is the case : f(1)=2
Also,
[tex]f(2) = \sqrt{2-1}+2 = 1+2=3[/tex]
This is also the case if we check the graph.
So, now we have to estimate f(x) at x=4:
[tex]f(4) = \sqrt{4-1}+2 = \sqrt{3}+2[/tex]
where [tex]\sqrt{3} \approx 1.73[/tex] , hence:
[tex]f(4) \approx 1.73+2 = 3.73[/tex]