Respuesta :
Answer:
The 98% confidence interval for population proportion of people who refuse evacuation is {0.30, 0.33].
Step-by-step explanation:
The sample drawn is of size, n = 5046.
As the sample size is large, i.e. n > 30, according to the Central limit theorem the sampling distribution of sample proportion will be normally distributed with mean [tex]\hat p[/tex] and standard deviation [tex]\sqrt{\frac{\hat p (1-\hat p)}{n} }[/tex].
The mean is: [tex]\hat p=0.31[/tex]
The confidence level (CL) = 98%
The confidence interval for single proportion is:
[tex]CI_{p}=[\hat p-z_{(\alpha /2)}\times\sqrt{\frac{\hat p (1-\hat p)}{n} },\ \hat p+z_{(\alpha /2)}\times\sqrt{\frac{\hat p (1-\hat p)}{n} }][/tex]
Here [tex]z_{(\alpha /2)}[/tex] = critical value and α = significance level.
Compute the value of α as follows:
[tex]\alpha =1-CL\\=1-0.98\\=0.02[/tex]
For α = 0.02 the critical value can be computed from the z table.
Then the value of [tex]z_{(\alpha /2)}[/tex] is ± 2.33.
The 98% confidence interval for population proportion is:
[tex]CI_{p}=[\hat p-z_{(\alpha /2)}\times\sqrt{\frac{\hat p (1-\hat p)}{n} },\ \hat p+z_{(\alpha /2)}\times\sqrt{\frac{\hat p (1-\hat p)}{n} }]\\=[0.31-2.33\times \sqrt{\frac{0.31\times(1-0.33)}{5046} },\ 0.31+2.33\times \sqrt{\frac{0.31\times(1-0.33)}{5046} } ]\\=[0.31-0.0152,\ 0.31+0.0152]\\=[0.2948,0.3252]\\\approx[0.30,\ 0.33][/tex]
Thus, the 98% confidence interval [0.30, 0.33] implies that there is a 0.98 probability that the population proportion of people who refuse evacuation is between 0.30 and 0.33.