2. Lab groups of three are to be randomly formed (without replacement) from a class that contains five engineers and four non-engineers. (8pts) (a) How many different lab groups are possible

Respuesta :

Answer:

The number of different lab groups possible is 84.

Step-by-step explanation:

Given:

A class consists of 5 engineers and 4 non-engineers.

A lab groups of 3 are to be formed of these 9 students.

The problem can be solved using combinations.

Combinations is the number of ways to select k items from a group of n items without replacement. The order of the arrangement does not matter in combinations.

The combination of k items from n items is: [tex]{n\choose k}=\frac{n!}{k!(n-k)!}[/tex]

Compute the number of different lab groups possible as follows:

The number of ways of selecting 3 students from 9 is = [tex]{n\choose k}={9\choose 3}[/tex]

                                                                                         [tex]=\frac{9!}{3!(9 - 3)!}\\=\frac{9!}{3!\times 6!}\\=\frac{362880}{6\times720}\\ =84[/tex]

Thus, the number of different lab groups possible is 84.